The edge-Erdős-Pósa property

Robertson and Seymour proved that the family of all graphs containing a fixed graph $H$ as a minor has the Erd\H{o}s-P\'osa property if and only if $H$ is planar. We show that this is no longer true for the edge version of the Erd\H{o}s-P\'osa property, and indeed even fails when $H$ is an...

Full description

Saved in:
Bibliographic Details
Main Authors: Bruhn, Henning (Author) , Heinlein, Matthias (Author) , Joos, Felix (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 28 Sep 2018
In: Arxiv
Year: 2018, Pages: 1-22
DOI:10.48550/arXiv.1809.11038
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.1809.11038
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1809.11038
Get full text
Author Notes:Henning Bruhn, Matthias Heinlein, Felix Joos
Description
Summary:Robertson and Seymour proved that the family of all graphs containing a fixed graph $H$ as a minor has the Erd\H{o}s-P\'osa property if and only if $H$ is planar. We show that this is no longer true for the edge version of the Erd\H{o}s-P\'osa property, and indeed even fails when $H$ is an arbitrary subcubic tree of large pathwidth or a long ladder. This answers a question of Raymond, Sau and Thilikos.
Item Description:Gesehen am 27.07.2022
Physical Description:Online Resource
DOI:10.48550/arXiv.1809.11038