On a rainbow version of Dirac's theorem

For a collection $\mathbf{G}=\{G_1,\dots, G_s\}$ of not necessarily distinct graphs on the same vertex set $V$, a graph $H$ with vertices in $V$ is a $\mathbf{G}$-transversal if there exists a bijection $\phi:E(H)\rightarrow [s]$ such that $e\in E(G_{\phi(e)})$ for all $e\in E(H)$. We prove that for...

Full description

Saved in:
Bibliographic Details
Main Authors: Joos, Felix (Author) , Kim, Jaehoon (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 3 Oct 2019
In: Arxiv
Year: 2019, Pages: 1-6
Online Access:Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1910.01281
Get full text
Author Notes:Felix Joos and Jaehoon Kim
Description
Summary:For a collection $\mathbf{G}=\{G_1,\dots, G_s\}$ of not necessarily distinct graphs on the same vertex set $V$, a graph $H$ with vertices in $V$ is a $\mathbf{G}$-transversal if there exists a bijection $\phi:E(H)\rightarrow [s]$ such that $e\in E(G_{\phi(e)})$ for all $e\in E(H)$. We prove that for $|V|=s\geq 3$ and $\delta(G_i)\geq s/2$ for each $i\in [s]$, there exists a $\mathbf{G}$-transversal that is a Hamilton cycle. This confirms a conjecture of Aharoni. We also prove an analogous result for perfect matchings.
Item Description:Identifizierung der Ressource nach: 15 Apr 2020
Gesehen am 27.07.2022
Physical Description:Online Resource