Euler tours in hypergraphs

We show that a quasirandom k-uniform hypergraph G has a tight Euler tour subject to the necessary condition that k divides all vertex degrees. The case when G is complete confirms a conjecture of Chung, Diaconis and Graham from 1989 on the existence of universal cycles for the k-subsets of an n-set.

Saved in:
Bibliographic Details
Main Authors: Glock, Stefan (Author) , Joos, Felix (Author) , Kühn, Daniela (Author) , Osthus, Deryk (Author)
Format: Article (Journal)
Language:English
Published: 22 May, 2020
In: Combinatorica
Year: 2020, Volume: 40, Issue: 5, Pages: 679-690
ISSN:1439-6912
DOI:10.1007/s00493-020-4046-8
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00493-020-4046-8
Get full text
Author Notes:Stefan Glock, Felix Joos, Daniela Kühn, Deryk Osthus
Description
Summary:We show that a quasirandom k-uniform hypergraph G has a tight Euler tour subject to the necessary condition that k divides all vertex degrees. The case when G is complete confirms a conjecture of Chung, Diaconis and Graham from 1989 on the existence of universal cycles for the k-subsets of an n-set.
Item Description:Gesehen am 27.07.2022
Physical Description:Online Resource
ISSN:1439-6912
DOI:10.1007/s00493-020-4046-8