Euler tours in hypergraphs
We show that a quasirandom k-uniform hypergraph G has a tight Euler tour subject to the necessary condition that k divides all vertex degrees. The case when G is complete confirms a conjecture of Chung, Diaconis and Graham from 1989 on the existence of universal cycles for the k-subsets of an n-set.
Gespeichert in:
| Hauptverfasser: | , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
22 May, 2020
|
| In: |
Combinatorica
Year: 2020, Jahrgang: 40, Heft: 5, Pages: 679-690 |
| ISSN: | 1439-6912 |
| DOI: | 10.1007/s00493-020-4046-8 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00493-020-4046-8 |
| Verfasserangaben: | Stefan Glock, Felix Joos, Daniela Kühn, Deryk Osthus |
| Zusammenfassung: | We show that a quasirandom k-uniform hypergraph G has a tight Euler tour subject to the necessary condition that k divides all vertex degrees. The case when G is complete confirms a conjecture of Chung, Diaconis and Graham from 1989 on the existence of universal cycles for the k-subsets of an n-set. |
|---|---|
| Beschreibung: | Gesehen am 27.07.2022 |
| Beschreibung: | Online Resource |
| ISSN: | 1439-6912 |
| DOI: | 10.1007/s00493-020-4046-8 |