On the hard sphere model and sphere packings in high dimensions

We prove a lower bound on the entropy of sphere packings of RdRd\mathbb{R}^{d} of density Θ(d⋅2−d)𝛩(d⋅2−d)\unicode[STIX]{x1D6E9}(d\cdot 2^{-d}). The entropy measures how plentiful such packings are, and our result is significantly stronger than the trivial lower bound that can be obtained from the m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jenssen, Matthew (VerfasserIn) , Joos, Felix (VerfasserIn) , Perkins, Will (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 14 January 2019
In: Forum of mathematics. Sigma
Year: 2019, Jahrgang: 7, Pages: 1-19
ISSN:2050-5094
DOI:10.1017/fms.2018.25
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1017/fms.2018.25
Verlag, lizenzpflichtig, Volltext: https://www.cambridge.org/core/journals/forum-of-mathematics-sigma/article/on-the-hard-sphere-model-and-sphere-packings-in-high-dimensions/230F9C40FC941DA38505046530C2F2A1
Volltext
Verfasserangaben:Matthew Jenssen, Felix Joos and Will Perkins
Beschreibung
Zusammenfassung:We prove a lower bound on the entropy of sphere packings of RdRd\mathbb{R}^{d} of density Θ(d⋅2−d)𝛩(d⋅2−d)\unicode[STIX]{x1D6E9}(d\cdot 2^{-d}). The entropy measures how plentiful such packings are, and our result is significantly stronger than the trivial lower bound that can be obtained from the mere existence of a dense packing. Our method also provides a new, statistical-physics-based proof of the Ω(d⋅2−d)𝛺(d⋅2−d)\unicode[STIX]{x1D6FA}(d\cdot 2^{-d}) lower bound on the maximum sphere packing density by showing that the expected packing density of a random configuration from the hard sphere model is at least (1+od(1))log(2/3-√)d⋅2−d(1+od(1))log⁡(2/3)d⋅2−d(1+o_{d}(1))\log (2/\sqrt{3})d\cdot 2^{-d} when the ratio of the fugacity parameter to the volume covered by a single sphere is at least 3−d/23−d/23^{-d/2}. Such a bound on the sphere packing density was first achieved by Rogers, with subsequent improvements to the leading constant by Davenport and Rogers, Ball, Vance, and Venkatesh.
Beschreibung:Gesehen am 27.07.2022
Beschreibung:Online Resource
ISSN:2050-5094
DOI:10.1017/fms.2018.25