A deep learning approach to galaxy cluster X-ray masses

We present a machine-learning (ML) approach for estimating galaxy cluster masses from Chandra mock images. We utilize a Convolutional Neural Network (CNN), a deep ML tool commonly used in image recognition tasks. The CNN is trained and tested on our sample of 7896 Chandra X-ray mock observations, wh...

Full description

Saved in:
Bibliographic Details
Main Authors: Ntampaka, Michelle (Author) , ZuHone, J. (Author) , Eisenstein, D. (Author) , Nagai, D. (Author) , Vikhlinin, A. (Author) , Hernquist, L. (Author) , Marinacci, Federico (Author) , Nelson, Dylan (Author) , Pakmor, Rüdiger (Author) , Pillepich, Annalisa (Author) , Torrey, Paul (Author) , Vogelsberger, Mark (Author)
Format: Article (Journal)
Language:English
Published: 2019 May 7
In: The astrophysical journal
Year: 2019, Volume: 876, Issue: 1, Pages: 1-7
ISSN:1538-4357
DOI:10.3847/1538-4357/ab14eb
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3847/1538-4357/ab14eb
Get full text
Author Notes:M. Ntampaka, J. ZuHone, D. Eisenstein, D. Nagai, A. Vikhlinin, L. Hernquist, F. Marinacci, D. Nelson, R. Pakmor, A. Pillepich, P. Torrey, and M. Vogelsberger
Description
Summary:We present a machine-learning (ML) approach for estimating galaxy cluster masses from Chandra mock images. We utilize a Convolutional Neural Network (CNN), a deep ML tool commonly used in image recognition tasks. The CNN is trained and tested on our sample of 7896 Chandra X-ray mock observations, which are based on 329 massive clusters from the simulation. Our CNN learns from a low resolution spatial distribution of photon counts and does not use spectral information. Despite our simplifying assumption to neglect spectral information, the resulting mass values estimated by the CNN exhibit small bias in comparison to the true masses of the simulated clusters (−0.02 dex) and reproduce the cluster masses with low intrinsic scatter, 8% in our best fold and 12% averaging over all. In contrast, a more standard core-excised luminosity method achieves 15%-18% scatter. We interpret the results with an approach inspired by Google DeepDream and find that the CNN ignores the central regions of clusters, which are known to have high scatter with mass.
Item Description:Gesehen am 20.07.2022
Physical Description:Online Resource
ISSN:1538-4357
DOI:10.3847/1538-4357/ab14eb