Rigidity of the saddle connection complex
For a half-translation surface (S,q)$(S,q)$, the associated saddle connection complex A(S,q)$\mathcal A(S,q)$ is the simplicial complex where vertices are the saddle connections on (S,q)$(S,q)$, with simplices spanned by sets of pairwise disjoint saddle connections. This complex can be naturally reg...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
30 June 2022
|
| In: |
Journal of topology
Year: 2022, Jahrgang: 15, Heft: 3, Pages: 1248-1310 |
| ISSN: | 1753-8424 |
| DOI: | 10.1112/topo.12242 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1112/topo.12242 Verlag, lizenzpflichtig, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1112/topo.12242 |
| Verfasserangaben: | Valentina Disarlo, Anja Randecker, Robert Tang |
| Zusammenfassung: | For a half-translation surface (S,q)$(S,q)$, the associated saddle connection complex A(S,q)$\mathcal A(S,q)$ is the simplicial complex where vertices are the saddle connections on (S,q)$(S,q)$, with simplices spanned by sets of pairwise disjoint saddle connections. This complex can be naturally regarded as an induced subcomplex of the arc complex. We prove that any simplicial isomorphism ϕ:A(S,q)→A(S′,q′)$\phi \colon \mathcal A(S,q) \rightarrow \mathcal A(S^\prime ,q^\prime )$ between saddle connection complexes is induced by an affine diffeomorphism F:(S,q)→(S′,q′ |
|---|---|
| Beschreibung: | Gesehen am 29.07.2022 |
| Beschreibung: | Online Resource |
| ISSN: | 1753-8424 |
| DOI: | 10.1112/topo.12242 |