Rigidity of the saddle connection complex
For a half-translation surface (S,q)$(S,q)$, the associated saddle connection complex A(S,q)$\mathcal A(S,q)$ is the simplicial complex where vertices are the saddle connections on (S,q)$(S,q)$, with simplices spanned by sets of pairwise disjoint saddle connections. This complex can be naturally reg...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
30 June 2022
|
| In: |
Journal of topology
Year: 2022, Jahrgang: 15, Heft: 3, Pages: 1248-1310 |
| ISSN: | 1753-8424 |
| DOI: | 10.1112/topo.12242 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1112/topo.12242 Verlag, lizenzpflichtig, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1112/topo.12242 |
| Verfasserangaben: | Valentina Disarlo, Anja Randecker, Robert Tang |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1811982468 | ||
| 003 | DE-627 | ||
| 005 | 20220820233825.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 220729s2022 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1112/topo.12242 |2 doi | |
| 035 | |a (DE-627)1811982468 | ||
| 035 | |a (DE-599)KXP1811982468 | ||
| 035 | |a (OCoLC)1341464503 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Disarlo, Valentina |e VerfasserIn |0 (DE-588)1154551067 |0 (DE-627)1015937667 |0 (DE-576)501098070 |4 aut | |
| 245 | 1 | 0 | |a Rigidity of the saddle connection complex |c Valentina Disarlo, Anja Randecker, Robert Tang |
| 264 | 1 | |c 30 June 2022 | |
| 300 | |a 63 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 29.07.2022 | ||
| 520 | |a For a half-translation surface (S,q)$(S,q)$, the associated saddle connection complex A(S,q)$\mathcal A(S,q)$ is the simplicial complex where vertices are the saddle connections on (S,q)$(S,q)$, with simplices spanned by sets of pairwise disjoint saddle connections. This complex can be naturally regarded as an induced subcomplex of the arc complex. We prove that any simplicial isomorphism ϕ:A(S,q)→A(S′,q′)$\phi \colon \mathcal A(S,q) \rightarrow \mathcal A(S^\prime ,q^\prime )$ between saddle connection complexes is induced by an affine diffeomorphism F:(S,q)→(S′,q′ |f \colon (S,q) \rightarrow (S^\prime ,q^\prime )$. In particular, this shows that the saddle connection complex is a complete invariant of affine equivalence classes of half-translation surfaces. Throughout our proof, we develop several combinatorial criteria of independent interest for detecting various geometric objects on a half-translation surface. | ||
| 700 | 1 | |a Randecker, Anja |e VerfasserIn |4 aut | |
| 700 | 1 | |a Tang, Robert |e VerfasserIn |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Journal of topology |d Hoboken, NJ : Wiley, 2008 |g 15(2022), 3, Seite 1248-1310 |h Online-Ressource |w (DE-627)55630022X |w (DE-600)2402810-1 |w (DE-576)306835541 |x 1753-8424 |7 nnas |a Rigidity of the saddle connection complex |
| 773 | 1 | 8 | |g volume:15 |g year:2022 |g number:3 |g pages:1248-1310 |g extent:63 |a Rigidity of the saddle connection complex |
| 856 | 4 | 0 | |u https://doi.org/10.1112/topo.12242 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://onlinelibrary.wiley.com/doi/abs/10.1112/topo.12242 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20220729 | ||
| 993 | |a Article | ||
| 994 | |a 2022 | ||
| 998 | |g 1154551067 |a Disarlo, Valentina |m 1154551067:Disarlo, Valentina |d 110000 |d 110100 |d 110000 |d 110400 |e 110000PD1154551067 |e 110100PD1154551067 |e 110000PD1154551067 |e 110400PD1154551067 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j | ||
| 999 | |a KXP-PPN1811982468 |e 4173737491 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"id":{"doi":["10.1112/topo.12242"],"eki":["1811982468"]},"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"30 June 2022"}],"name":{"displayForm":["Valentina Disarlo, Anja Randecker, Robert Tang"]},"relHost":[{"origin":[{"publisherPlace":"Hoboken, NJ ; Oxford","dateIssuedDisp":"2008-","publisher":"Wiley ; Oxford Univ. Press","dateIssuedKey":"2008"}],"id":{"issn":["1753-8424"],"doi":["10.1112/(ISSN)1753-8424"],"eki":["55630022X"],"zdb":["2402810-1"]},"name":{"displayForm":["London Mathematical Society"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Journal of topology","title":"Journal of topology"}],"pubHistory":["1.2008 -"],"part":{"extent":"63","volume":"15","text":"15(2022), 3, Seite 1248-1310","pages":"1248-1310","issue":"3","year":"2022"},"disp":"Rigidity of the saddle connection complexJournal of topology","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 13.08.10"],"language":["eng"],"corporate":[{"roleDisplay":"Herausgebendes Organ","display":"London Mathematical Society","role":"isb"}],"recId":"55630022X"}],"physDesc":[{"extent":"63 S."}],"title":[{"title":"Rigidity of the saddle connection complex","title_sort":"Rigidity of the saddle connection complex"}],"person":[{"given":"Valentina","family":"Disarlo","role":"aut","display":"Disarlo, Valentina","roleDisplay":"VerfasserIn"},{"given":"Anja","family":"Randecker","role":"aut","display":"Randecker, Anja","roleDisplay":"VerfasserIn"},{"family":"Tang","given":"Robert","display":"Tang, Robert","roleDisplay":"VerfasserIn","role":"aut"}],"recId":"1811982468","language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 29.07.2022"]} | ||
| SRT | |a DISARLOVALRIGIDITYOF3020 | ||