Periodic delay orbits and the polyfold implicit function theorem

We consider differential delay equations of the form partial derivative(t)x(t) = X-t(x(t-tau)) in R-n, where (X-t)(t is an element of S)1 is a time-dependent family of smooth vector fields on R-n and tau is a delay parameter. If there is a (suitably non-degenerate) periodic solution x(0) of this equ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Albers, Peter (VerfasserIn) , Seifert, Irene (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 7 July 2022
In: Commentarii mathematici Helvetici
Year: 2022, Jahrgang: 97, Heft: 2, Pages: 383-412
ISSN:1420-8946
DOI:10.4171/CMH/533
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.4171/CMH/533
Verlag, lizenzpflichtig, Volltext: https://www.webofscience.com/api/gateway?GWVersion=2&SrcAuth=DynamicDOIArticle&SrcApp=WOS&KeyAID=10.4171%2FCMH%2F533&DestApp=DOI&SrcAppSID=EUW1ED0C98ANz1hFAQwiiDBqGFa2p&SrcJTitle=COMMENTARII+MATHEMATICI+HELVETICI&DestDOIRegistrantName=EMS+Press
Volltext
Verfasserangaben:Peter Albers, Irene Seifert
Beschreibung
Zusammenfassung:We consider differential delay equations of the form partial derivative(t)x(t) = X-t(x(t-tau)) in R-n, where (X-t)(t is an element of S)1 is a time-dependent family of smooth vector fields on R-n and tau is a delay parameter. If there is a (suitably non-degenerate) periodic solution x(0) of this equation for tau = 0, that is without delay, there are good reasons to expect existence of a family of periodic solutions for all sufficiently small delays, smoothly parametrized by tau. However, it seems difficult to prove this using the classical implicit function theorem, since the equation above, considered as an operator, is not smooth in the delay parameter. In this paper, we show how to use the M-polyfold implicit function theorem by Hofer-Wysocki-Zehnder (2009, 2021) to overcome this problem in a natural setup.
Beschreibung:Gesehen am 11.08.2022
Beschreibung:Online Resource
ISSN:1420-8946
DOI:10.4171/CMH/533