Periodic delay orbits and the polyfold implicit function theorem

We consider differential delay equations of the form partial derivative(t)x(t) = X-t(x(t-tau)) in R-n, where (X-t)(t is an element of S)1 is a time-dependent family of smooth vector fields on R-n and tau is a delay parameter. If there is a (suitably non-degenerate) periodic solution x(0) of this equ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Albers, Peter (VerfasserIn) , Seifert, Irene (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 7 July 2022
In: Commentarii mathematici Helvetici
Year: 2022, Jahrgang: 97, Heft: 2, Pages: 383-412
ISSN:1420-8946
DOI:10.4171/CMH/533
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.4171/CMH/533
Verlag, lizenzpflichtig, Volltext: https://www.webofscience.com/api/gateway?GWVersion=2&SrcAuth=DynamicDOIArticle&SrcApp=WOS&KeyAID=10.4171%2FCMH%2F533&DestApp=DOI&SrcAppSID=EUW1ED0C98ANz1hFAQwiiDBqGFa2p&SrcJTitle=COMMENTARII+MATHEMATICI+HELVETICI&DestDOIRegistrantName=EMS+Press
Volltext
Verfasserangaben:Peter Albers, Irene Seifert

MARC

LEADER 00000caa a2200000 c 4500
001 1814178260
003 DE-627
005 20230118153750.0
007 cr uuu---uuuuu
008 220811s2022 xx |||||o 00| ||eng c
024 7 |a 10.4171/CMH/533  |2 doi 
035 |a (DE-627)1814178260 
035 |a (DE-599)KXP1814178260 
035 |a (OCoLC)1361713365 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Albers, Peter  |d 1975-  |e VerfasserIn  |0 (DE-588)129903817  |0 (DE-627)483350362  |0 (DE-576)188953140  |4 aut 
245 1 0 |a Periodic delay orbits and the polyfold implicit function theorem  |c Peter Albers, Irene Seifert 
264 1 |c 7 July 2022 
300 |a 30 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 11.08.2022 
520 |a We consider differential delay equations of the form partial derivative(t)x(t) = X-t(x(t-tau)) in R-n, where (X-t)(t is an element of S)1 is a time-dependent family of smooth vector fields on R-n and tau is a delay parameter. If there is a (suitably non-degenerate) periodic solution x(0) of this equation for tau = 0, that is without delay, there are good reasons to expect existence of a family of periodic solutions for all sufficiently small delays, smoothly parametrized by tau. However, it seems difficult to prove this using the classical implicit function theorem, since the equation above, considered as an operator, is not smooth in the delay parameter. In this paper, we show how to use the M-polyfold implicit function theorem by Hofer-Wysocki-Zehnder (2009, 2021) to overcome this problem in a natural setup. 
650 4 |a Delay differential equations 
650 4 |a differential-equations 
650 4 |a implicit function theorem 
650 4 |a periodic orbits 
650 4 |a polyfold theory 
700 1 |a Seifert, Irene  |d 1993-  |e VerfasserIn  |0 (DE-588)1155950178  |0 (DE-627)1018508201  |0 (DE-576)501954945  |4 aut 
773 0 8 |i Enthalten in  |t Commentarii mathematici Helvetici  |d Zürich : EMS Publ. House, 1929  |g 97(2022), 2, Seite 383-412  |h Online-Ressource  |w (DE-627)253721504  |w (DE-600)1458917-5  |w (DE-576)072372176  |x 1420-8946  |7 nnas  |a Periodic delay orbits and the polyfold implicit function theorem 
773 1 8 |g volume:97  |g year:2022  |g number:2  |g pages:383-412  |g extent:30  |a Periodic delay orbits and the polyfold implicit function theorem 
856 4 0 |u https://doi.org/10.4171/CMH/533  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.webofscience.com/api/gateway?GWVersion=2&SrcAuth=DynamicDOIArticle&SrcApp=WOS&KeyAID=10.4171%2FCMH%2F533&DestApp=DOI&SrcAppSID=EUW1ED0C98ANz1hFAQwiiDBqGFa2p&SrcJTitle=COMMENTARII+MATHEMATICI+HELVETICI&DestDOIRegistrantName=EMS+Press  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220811 
993 |a Article 
994 |a 2022 
998 |g 1155950178  |a Seifert, Irene  |m 1155950178:Seifert, Irene  |d 110000  |d 110100  |d 110000  |d 110400  |e 110000PS1155950178  |e 110100PS1155950178  |e 110000PS1155950178  |e 110400PS1155950178  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |p 2  |y j 
998 |g 129903817  |a Albers, Peter  |m 129903817:Albers, Peter  |d 110000  |d 110100  |d 110000  |d 110400  |e 110000PA129903817  |e 110100PA129903817  |e 110000PA129903817  |e 110400PA129903817  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j 
999 |a KXP-PPN1814178260  |e 4178489348 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title_sort":"Periodic delay orbits and the polyfold implicit function theorem","title":"Periodic delay orbits and the polyfold implicit function theorem"}],"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Albers, Peter","given":"Peter","family":"Albers"},{"given":"Irene","family":"Seifert","role":"aut","display":"Seifert, Irene","roleDisplay":"VerfasserIn"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 11.08.2022"],"language":["eng"],"recId":"1814178260","origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"7 July 2022"}],"id":{"doi":["10.4171/CMH/533"],"eki":["1814178260"]},"name":{"displayForm":["Peter Albers, Irene Seifert"]},"physDesc":[{"extent":"30 S."}],"relHost":[{"recId":"253721504","language":["ger"],"disp":"Periodic delay orbits and the polyfold implicit function theoremCommentarii mathematici Helvetici","note":["Gesehen am 01.09.2021"],"type":{"media":"Online-Ressource","bibl":"periodical"},"part":{"volume":"97","text":"97(2022), 2, Seite 383-412","extent":"30","year":"2022","issue":"2","pages":"383-412"},"titleAlt":[{"title":"CMH"}],"pubHistory":["1.1929 -"],"title":[{"title":"Commentarii mathematici Helvetici","subtitle":"CMH ; eine Zeitschrift der Schweizerischen Mathematischen Gesellschaft","title_sort":"Commentarii mathematici Helvetici"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"doi":["10.4171/CMH"],"eki":["253721504"],"zdb":["1458917-5"],"issn":["1420-8946"]},"origin":[{"dateIssuedDisp":"1929-","dateIssuedKey":"1929","publisher":"EMS Publ. House ; Birkhäuser","publisherPlace":"Zürich ; Basel"}]}]} 
SRT |a ALBERSPETEPERIODICDE7202