Stability analysis of nonthermal fixed points in longitudinally expanding kinetic theory

We use the Hamiltonian formulation of kinetic theory to perform a stability analysis of nonthermal fixed points in a non-Abelian plasma. We construct a perturbative expansion of the Fokker-Planck collision kernel in an adiabatic approximation and show that the (next-to-)leading order solutions repro...

Full description

Saved in:
Bibliographic Details
Main Authors: Mikheev, Aleksandr N. (Author) , Mazeliauskas, Aleksas (Author) , Berges, Jürgen (Author)
Format: Article (Journal)
Language:English
Published: 29 June 2022
In: Physical review
Year: 2022, Volume: 105, Issue: 11, Pages: 1-10
ISSN:2470-0029
DOI:10.1103/PhysRevD.105.116025
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevD.105.116025
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevD.105.116025
Get full text
Author Notes:Aleksandr N. Mikheev, Aleksas Mazeliauskas, and Jürgen Berges
Description
Summary:We use the Hamiltonian formulation of kinetic theory to perform a stability analysis of nonthermal fixed points in a non-Abelian plasma. We construct a perturbative expansion of the Fokker-Planck collision kernel in an adiabatic approximation and show that the (next-to-)leading order solutions reproduce the known nonthermal fixed point scaling exponents. Working at next-to-leading order, we derive the stability equations for scaling exponents and find the relaxation rate to the nonthermal fixed point. This approach provides the basis for an understanding of the prescaling phenomena observed in QCD kinetic theory and nonrelativistic Bose gas systems.
Item Description:Gesehen am 23.08.2022
Physical Description:Online Resource
ISSN:2470-0029
DOI:10.1103/PhysRevD.105.116025