On quotients of the Riemann zeta function at consecutive positive integers

We express the quotients of the Riemann zeta function at consecutive positive integers in terms of the limit of an average sum of quotients of special values of Dirichlet L-functions.

Saved in:
Bibliographic Details
Main Author: Kohnen, Winfried (Author)
Format: Article (Journal)
Language:English
Published: 2022
In: Proceedings of the American Mathematical Society
Year: 2022, Volume: 150, Issue: 02, Pages: 539-546
ISSN:1088-6826
DOI:10.1090/proc/15675
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1090/proc/15675
Verlag, lizenzpflichtig, Volltext: https://www.ams.org/proc/2022-150-02/S0002-9939-2021-15675-X/
Get full text
Author Notes:Winfried Kohnen
Description
Summary:We express the quotients of the Riemann zeta function at consecutive positive integers in terms of the limit of an average sum of quotients of special values of Dirichlet L-functions.
Item Description:Article electronically published on December 7, 2021
Gesehen am 07.09.2022
Physical Description:Online Resource
ISSN:1088-6826
DOI:10.1090/proc/15675