On quotients of the Riemann zeta function at consecutive positive integers
We express the quotients of the Riemann zeta function at consecutive positive integers in terms of the limit of an average sum of quotients of special values of Dirichlet L-functions.
Saved in:
| Main Author: | |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
2022
|
| In: |
Proceedings of the American Mathematical Society
Year: 2022, Volume: 150, Issue: 02, Pages: 539-546 |
| ISSN: | 1088-6826 |
| DOI: | 10.1090/proc/15675 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1090/proc/15675 Verlag, lizenzpflichtig, Volltext: https://www.ams.org/proc/2022-150-02/S0002-9939-2021-15675-X/ |
| Author Notes: | Winfried Kohnen |
| Summary: | We express the quotients of the Riemann zeta function at consecutive positive integers in terms of the limit of an average sum of quotients of special values of Dirichlet L-functions. |
|---|---|
| Item Description: | Article electronically published on December 7, 2021 Gesehen am 07.09.2022 |
| Physical Description: | Online Resource |
| ISSN: | 1088-6826 |
| DOI: | 10.1090/proc/15675 |