On quotients of the Riemann zeta function at consecutive positive integers
We express the quotients of the Riemann zeta function at consecutive positive integers in terms of the limit of an average sum of quotients of special values of Dirichlet L-functions.
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2022
|
| In: |
Proceedings of the American Mathematical Society
Year: 2022, Jahrgang: 150, Heft: 02, Pages: 539-546 |
| ISSN: | 1088-6826 |
| DOI: | 10.1090/proc/15675 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1090/proc/15675 Verlag, lizenzpflichtig, Volltext: https://www.ams.org/proc/2022-150-02/S0002-9939-2021-15675-X/ |
| Verfasserangaben: | Winfried Kohnen |
| Zusammenfassung: | We express the quotients of the Riemann zeta function at consecutive positive integers in terms of the limit of an average sum of quotients of special values of Dirichlet L-functions. |
|---|---|
| Beschreibung: | Article electronically published on December 7, 2021 Gesehen am 07.09.2022 |
| Beschreibung: | Online Resource |
| ISSN: | 1088-6826 |
| DOI: | 10.1090/proc/15675 |