Novel imaging technologies in the study of HIV

The replication cycle of HIV proceeds within an infected cell and imaging techniques allow us to focus on the pathogen in this cellular environment. During recent years, both electron microscopy and fluorescence microscopy have evolved from methods providing two-dimensional still images to technique...

Full description

Saved in:
Bibliographic Details
Main Author: Müller, Barbara (Author)
Format: Article (Journal)
Language:English
Published: 19 Aug 2011
In: Future virology
Year: 2011, Volume: 6, Issue: 8, Pages: 929-940
ISSN:1746-0808
DOI:10.2217/fvl.11.66
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.2217/fvl.11.66
Verlag, lizenzpflichtig, Volltext: https://www.futuremedicine.com/doi/10.2217/fvl.11.66
Get full text
Author Notes:Barbara Müller
Description
Summary:The replication cycle of HIV proceeds within an infected cell and imaging techniques allow us to focus on the pathogen in this cellular environment. During recent years, both electron microscopy and fluorescence microscopy have evolved from methods providing two-dimensional still images to techniques that can resolve native, three-dimensional structures at resolutions down to approximately 20 Å, or allow direct real-time observation of dynamic intracellular events, respectively, thereby yielding numerous novel insights into HIV biology. Future technological developments are expected to narrow the gap between electron microscopy (high spatial and structural resolution, but no information about dynamics) and fluorescence microscopy (high temporal resolution and high throughput, but low spatial resolution), providing detailed views that will deepen our understanding of HIV-cell interactions.
Item Description:Gesehen am14.09.2022
Physical Description:Online Resource
ISSN:1746-0808
DOI:10.2217/fvl.11.66