From 3D hydrodynamic simulations of common-envelope interaction to gravitational-wave mergers

Modeling the evolution of progenitors of gravitational-wave merger events in binary stars faces two major uncertainties: the common-envelope phase and supernova kicks. These two processes are critical for the final orbital configuration of double compact-object systems with neutron stars and black h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Moreno, Melvin M. (VerfasserIn) , Schneider, Fabian (VerfasserIn) , Röpke, Friedrich (VerfasserIn) , Ohlmann, Sebastian T. (VerfasserIn) , Pakmor, Rüdiger (VerfasserIn) , Podsiadlowski, Philipp (VerfasserIn) , Sand, Christian (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 23 Nov 2021
In: Arxiv
Year: 2021, Pages: 1-16
DOI:10.48550/arXiv.2111.12112
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.48550/arXiv.2111.12112
Verlag, kostenfrei, Volltext: http://arxiv.org/abs/2111.12112
Volltext
Verfasserangaben:Melvin M. Moreno, Fabian R.N. Schneider, Friedrich K. Röpke, Sebastian T. Ohlmann, Rüdiger Pakmor, Philipp Podsiadlowski, and Christian Sand
Beschreibung
Zusammenfassung:Modeling the evolution of progenitors of gravitational-wave merger events in binary stars faces two major uncertainties: the common-envelope phase and supernova kicks. These two processes are critical for the final orbital configuration of double compact-object systems with neutron stars and black holes. Predictive one-dimensional models of common-envelope interaction are lacking and multidimensional simulations are challenged by the vast range of relevant spatial and temporal scales. Here, we present three-dimensional hydrodynamic simulations of the common-envelope interaction of an initially 10 M⊙ red supergiant primary star with a black-hole and a neutron-star companion. ...
Beschreibung:Artikelversion vom 13. Juli 2022
Gesehen am 09.01.2024
Beschreibung:Online Resource
DOI:10.48550/arXiv.2111.12112