From 3D hydrodynamic simulations of common-envelope interaction to gravitational-wave mergers
Modeling the evolution of progenitors of gravitational-wave merger events in binary stars faces two major uncertainties: the common-envelope phase and supernova kicks. These two processes are critical for the final orbital configuration of double compact-object systems with neutron stars and black h...
Gespeichert in:
| Hauptverfasser: | , , , , , , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
23 Nov 2021
|
| In: |
Arxiv
Year: 2021, Pages: 1-16 |
| DOI: | 10.48550/arXiv.2111.12112 |
| Online-Zugang: | Verlag, kostenfrei, Volltext: https://doi.org/10.48550/arXiv.2111.12112 Verlag, kostenfrei, Volltext: http://arxiv.org/abs/2111.12112 |
| Verfasserangaben: | Melvin M. Moreno, Fabian R.N. Schneider, Friedrich K. Röpke, Sebastian T. Ohlmann, Rüdiger Pakmor, Philipp Podsiadlowski, and Christian Sand |
| Zusammenfassung: | Modeling the evolution of progenitors of gravitational-wave merger events in binary stars faces two major uncertainties: the common-envelope phase and supernova kicks. These two processes are critical for the final orbital configuration of double compact-object systems with neutron stars and black holes. Predictive one-dimensional models of common-envelope interaction are lacking and multidimensional simulations are challenged by the vast range of relevant spatial and temporal scales. Here, we present three-dimensional hydrodynamic simulations of the common-envelope interaction of an initially 10 M⊙ red supergiant primary star with a black-hole and a neutron-star companion. ... |
|---|---|
| Beschreibung: | Artikelversion vom 13. Juli 2022 Gesehen am 09.01.2024 |
| Beschreibung: | Online Resource |
| DOI: | 10.48550/arXiv.2111.12112 |