Stable discontinuous stationary solutions to reaction-diffusion-ODE systems

A general system of n ordinary differential equations coupled with one reaction-diffusion equation, considered in a bounded N-dimensional domain, with no-flux boundary condition is studied in a context of pattern formation. Such initial boundary value problems may have different types of stationary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cygan, Szymon (VerfasserIn) , Karch, Grzegorz (VerfasserIn) , Marciniak-Czochra, Anna (VerfasserIn) , Suzuki, Kanako (VerfasserIn)
Dokumenttyp: Article (Journal) Chapter/Article
Sprache:Englisch
Veröffentlicht: 1 Nov 2021
In: Arxiv
Year: 2021, Pages: 1-31
DOI:10.48550/arXiv.2111.01214
Online-Zugang:kostenfrei
kostenfrei
Volltext
Verfasserangaben:Szymon Cygan, Grzegorz Karch, Anna Marciniak-Czochra, and Kanako Suzuki
Beschreibung
Zusammenfassung:A general system of n ordinary differential equations coupled with one reaction-diffusion equation, considered in a bounded N-dimensional domain, with no-flux boundary condition is studied in a context of pattern formation. Such initial boundary value problems may have different types of stationary solutions. In our parallel work [Instability of all regular stationary solutions to reaction-diffusion-ODE systems (2021)], regular (i.e. sufficiently smooth) stationary solutions are shown to exist, however, all of them are unstable. The goal of this work is to construct discontinuous stationary solutions to general reaction-diffusion-ODE systems and to find sufficient conditions for their stability.
Beschreibung:Artikelversion vom 13. April 2023
Gesehen am 09.01.2024
Beschreibung:Online Resource
DOI:10.48550/arXiv.2111.01214