Stable discontinuous stationary solutions to reaction-diffusion-ODE systems

A general system of n ordinary differential equations coupled with one reaction-diffusion equation, considered in a bounded N-dimensional domain, with no-flux boundary condition is studied in a context of pattern formation. Such initial boundary value problems may have different types of stationary...

Full description

Saved in:
Bibliographic Details
Main Authors: Cygan, Szymon (Author) , Karch, Grzegorz (Author) , Marciniak-Czochra, Anna (Author) , Suzuki, Kanako (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 1 Nov 2021
In: Arxiv
Year: 2021, Pages: 1-31
DOI:10.48550/arXiv.2111.01214
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.48550/arXiv.2111.01214
Verlag, kostenfrei, Volltext: http://arxiv.org/abs/2111.01214
Get full text
Author Notes:Szymon Cygan, Grzegorz Karch, Anna Marciniak-Czochra, and Kanako Suzuki

MARC

LEADER 00000caa a2200000 c 4500
001 1816930113
003 DE-627
005 20240109093528.0
007 cr uuu---uuuuu
008 220919s2021 xx |||||o 00| ||eng c
024 7 |a 10.48550/arXiv.2111.01214  |2 doi 
035 |a (DE-627)1816930113 
035 |a (DE-599)KXP1816930113 
035 |a (OCoLC)1361714293 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Cygan, Szymon  |e VerfasserIn  |0 (DE-588)1268443352  |0 (DE-627)1816972266  |4 aut 
245 1 0 |a Stable discontinuous stationary solutions to reaction-diffusion-ODE systems  |c Szymon Cygan, Grzegorz Karch, Anna Marciniak-Czochra, and Kanako Suzuki 
264 1 |c 1 Nov 2021 
300 |b Illustrationen 
300 |a 31 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Artikelversion vom 13. April 2023 
500 |a Gesehen am 09.01.2024 
520 |a A general system of n ordinary differential equations coupled with one reaction-diffusion equation, considered in a bounded N-dimensional domain, with no-flux boundary condition is studied in a context of pattern formation. Such initial boundary value problems may have different types of stationary solutions. In our parallel work [Instability of all regular stationary solutions to reaction-diffusion-ODE systems (2021)], regular (i.e. sufficiently smooth) stationary solutions are shown to exist, however, all of them are unstable. The goal of this work is to construct discontinuous stationary solutions to general reaction-diffusion-ODE systems and to find sufficient conditions for their stability. 
650 4 |a 35K57, 35B35, 35B36, 92C15 
650 4 |a Mathematics - Analysis of PDEs 
700 1 |a Karch, Grzegorz  |e VerfasserIn  |0 (DE-588)1119925223  |0 (DE-627)873033469  |0 (DE-576)409787655  |4 aut 
700 1 |a Marciniak-Czochra, Anna  |d 1974-  |e VerfasserIn  |0 (DE-588)1044379626  |0 (DE-627)771928432  |0 (DE-576)397031505  |4 aut 
700 1 |a Suzuki, Kanako  |e VerfasserIn  |0 (DE-588)1119925789  |0 (DE-627)873637720  |0 (DE-576)409787663  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2021), Artikel-ID 2111.01214, Seite 1-31  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a Stable discontinuous stationary solutions to reaction-diffusion-ODE systems 
773 1 8 |g year:2021  |g elocationid:2111.01214  |g pages:1-31  |g extent:31  |a Stable discontinuous stationary solutions to reaction-diffusion-ODE systems 
856 4 0 |u https://doi.org/10.48550/arXiv.2111.01214  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u http://arxiv.org/abs/2111.01214  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20220919 
993 |a Article 
994 |a 2021 
998 |g 1044379626  |a Marciniak-Czochra, Anna  |m 1044379626:Marciniak-Czochra, Anna  |d 110000  |d 110200  |d 110000  |d 110400  |d 700000  |d 708000  |d 700000  |d 728500  |e 110000PM1044379626  |e 110200PM1044379626  |e 110000PM1044379626  |e 110400PM1044379626  |e 700000PM1044379626  |e 708000PM1044379626  |e 700000PM1044379626  |e 728500PM1044379626  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |k 0/700000/  |k 1/700000/708000/  |k 0/700000/  |k 1/700000/728500/  |p 3 
999 |a KXP-PPN1816930113  |e 4189957542 
BIB |a Y 
JSO |a {"physDesc":[{"extent":"31 S.","noteIll":"Illustrationen"}],"name":{"displayForm":["Szymon Cygan, Grzegorz Karch, Anna Marciniak-Czochra, and Kanako Suzuki"]},"recId":"1816930113","id":{"doi":["10.48550/arXiv.2111.01214"],"eki":["1816930113"]},"relHost":[{"id":{"zdb":["2225896-6"],"eki":["509006531"]},"physDesc":[{"extent":"Online-Ressource"}],"pubHistory":["1991 -"],"recId":"509006531","origin":[{"publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedDisp":"1991-"}],"note":["Gesehen am 28.05.2024"],"type":{"bibl":"edited-book","media":"Online-Ressource"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"part":{"text":"(2021), Artikel-ID 2111.01214, Seite 1-31","pages":"1-31","year":"2021","extent":"31"},"language":["eng"],"disp":"Stable discontinuous stationary solutions to reaction-diffusion-ODE systemsArxiv"}],"person":[{"role":"aut","given":"Szymon","family":"Cygan","display":"Cygan, Szymon"},{"role":"aut","given":"Grzegorz","display":"Karch, Grzegorz","family":"Karch"},{"display":"Marciniak-Czochra, Anna","family":"Marciniak-Czochra","given":"Anna","role":"aut"},{"family":"Suzuki","display":"Suzuki, Kanako","given":"Kanako","role":"aut"}],"note":["Artikelversion vom 13. April 2023","Gesehen am 09.01.2024"],"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"1 Nov 2021"}],"type":{"media":"Online-Ressource","bibl":"chapter"},"title":[{"title_sort":"Stable discontinuous stationary solutions to reaction-diffusion-ODE systems","title":"Stable discontinuous stationary solutions to reaction-diffusion-ODE systems"}],"language":["eng"]} 
SRT |a CYGANSZYMOSTABLEDISC1202