Stable discontinuous stationary solutions to reaction-diffusion-ODE systems
A general system of n ordinary differential equations coupled with one reaction-diffusion equation, considered in a bounded N-dimensional domain, with no-flux boundary condition is studied in a context of pattern formation. Such initial boundary value problems may have different types of stationary...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article (Journal) Chapter/Article |
| Language: | English |
| Published: |
1 Nov 2021
|
| In: |
Arxiv
Year: 2021, Pages: 1-31 |
| DOI: | 10.48550/arXiv.2111.01214 |
| Online Access: | Verlag, kostenfrei, Volltext: https://doi.org/10.48550/arXiv.2111.01214 Verlag, kostenfrei, Volltext: http://arxiv.org/abs/2111.01214 |
| Author Notes: | Szymon Cygan, Grzegorz Karch, Anna Marciniak-Czochra, and Kanako Suzuki |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1816930113 | ||
| 003 | DE-627 | ||
| 005 | 20240109093528.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 220919s2021 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.48550/arXiv.2111.01214 |2 doi | |
| 035 | |a (DE-627)1816930113 | ||
| 035 | |a (DE-599)KXP1816930113 | ||
| 035 | |a (OCoLC)1361714293 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Cygan, Szymon |e VerfasserIn |0 (DE-588)1268443352 |0 (DE-627)1816972266 |4 aut | |
| 245 | 1 | 0 | |a Stable discontinuous stationary solutions to reaction-diffusion-ODE systems |c Szymon Cygan, Grzegorz Karch, Anna Marciniak-Czochra, and Kanako Suzuki |
| 264 | 1 | |c 1 Nov 2021 | |
| 300 | |b Illustrationen | ||
| 300 | |a 31 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Artikelversion vom 13. April 2023 | ||
| 500 | |a Gesehen am 09.01.2024 | ||
| 520 | |a A general system of n ordinary differential equations coupled with one reaction-diffusion equation, considered in a bounded N-dimensional domain, with no-flux boundary condition is studied in a context of pattern formation. Such initial boundary value problems may have different types of stationary solutions. In our parallel work [Instability of all regular stationary solutions to reaction-diffusion-ODE systems (2021)], regular (i.e. sufficiently smooth) stationary solutions are shown to exist, however, all of them are unstable. The goal of this work is to construct discontinuous stationary solutions to general reaction-diffusion-ODE systems and to find sufficient conditions for their stability. | ||
| 650 | 4 | |a 35K57, 35B35, 35B36, 92C15 | |
| 650 | 4 | |a Mathematics - Analysis of PDEs | |
| 700 | 1 | |a Karch, Grzegorz |e VerfasserIn |0 (DE-588)1119925223 |0 (DE-627)873033469 |0 (DE-576)409787655 |4 aut | |
| 700 | 1 | |a Marciniak-Czochra, Anna |d 1974- |e VerfasserIn |0 (DE-588)1044379626 |0 (DE-627)771928432 |0 (DE-576)397031505 |4 aut | |
| 700 | 1 | |a Suzuki, Kanako |e VerfasserIn |0 (DE-588)1119925789 |0 (DE-627)873637720 |0 (DE-576)409787663 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2021), Artikel-ID 2111.01214, Seite 1-31 |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a Stable discontinuous stationary solutions to reaction-diffusion-ODE systems |
| 773 | 1 | 8 | |g year:2021 |g elocationid:2111.01214 |g pages:1-31 |g extent:31 |a Stable discontinuous stationary solutions to reaction-diffusion-ODE systems |
| 856 | 4 | 0 | |u https://doi.org/10.48550/arXiv.2111.01214 |x Verlag |x Resolving-System |z kostenfrei |3 Volltext |
| 856 | 4 | 0 | |u http://arxiv.org/abs/2111.01214 |x Verlag |z kostenfrei |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20220919 | ||
| 993 | |a Article | ||
| 994 | |a 2021 | ||
| 998 | |g 1044379626 |a Marciniak-Czochra, Anna |m 1044379626:Marciniak-Czochra, Anna |d 110000 |d 110200 |d 110000 |d 110400 |d 700000 |d 708000 |d 700000 |d 728500 |e 110000PM1044379626 |e 110200PM1044379626 |e 110000PM1044379626 |e 110400PM1044379626 |e 700000PM1044379626 |e 708000PM1044379626 |e 700000PM1044379626 |e 728500PM1044379626 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |k 0/700000/ |k 1/700000/708000/ |k 0/700000/ |k 1/700000/728500/ |p 3 | ||
| 999 | |a KXP-PPN1816930113 |e 4189957542 | ||
| BIB | |a Y | ||
| JSO | |a {"physDesc":[{"extent":"31 S.","noteIll":"Illustrationen"}],"name":{"displayForm":["Szymon Cygan, Grzegorz Karch, Anna Marciniak-Czochra, and Kanako Suzuki"]},"recId":"1816930113","id":{"doi":["10.48550/arXiv.2111.01214"],"eki":["1816930113"]},"relHost":[{"id":{"zdb":["2225896-6"],"eki":["509006531"]},"physDesc":[{"extent":"Online-Ressource"}],"pubHistory":["1991 -"],"recId":"509006531","origin":[{"publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedDisp":"1991-"}],"note":["Gesehen am 28.05.2024"],"type":{"bibl":"edited-book","media":"Online-Ressource"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"part":{"text":"(2021), Artikel-ID 2111.01214, Seite 1-31","pages":"1-31","year":"2021","extent":"31"},"language":["eng"],"disp":"Stable discontinuous stationary solutions to reaction-diffusion-ODE systemsArxiv"}],"person":[{"role":"aut","given":"Szymon","family":"Cygan","display":"Cygan, Szymon"},{"role":"aut","given":"Grzegorz","display":"Karch, Grzegorz","family":"Karch"},{"display":"Marciniak-Czochra, Anna","family":"Marciniak-Czochra","given":"Anna","role":"aut"},{"family":"Suzuki","display":"Suzuki, Kanako","given":"Kanako","role":"aut"}],"note":["Artikelversion vom 13. April 2023","Gesehen am 09.01.2024"],"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"1 Nov 2021"}],"type":{"media":"Online-Ressource","bibl":"chapter"},"title":[{"title_sort":"Stable discontinuous stationary solutions to reaction-diffusion-ODE systems","title":"Stable discontinuous stationary solutions to reaction-diffusion-ODE systems"}],"language":["eng"]} | ||
| SRT | |a CYGANSZYMOSTABLEDISC1202 | ||