Curvature formulas related to a family of stable Higgs bundles

In this paper, we investigate the geometry of the base complex manifold of an effectively parametrized holomorphic family of stable Higgs bundles over a fixed compact Kähler manifold. The starting point of our study is Schumacher-Toma/Biswas-Schumacher’s curvature formulas for Weil-Petersson-type m...

Full description

Saved in:
Bibliographic Details
Main Authors: Hu, Zhi (Author) , Huang, Pengfei (Author)
Format: Article (Journal)
Language:English
Published: November 2021
In: Communications in mathematical physics
Year: 2021, Volume: 387, Issue: 3, Pages: 1491-1514
ISSN:1432-0916
DOI:10.1007/s00220-021-04132-9
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00220-021-04132-9
Verlag, lizenzpflichtig, Volltext: https://link.springer.com/article/10.1007/s00220-021-04132-9
Get full text
Author Notes:Zhi Hu, Pengfei Huang
Description
Summary:In this paper, we investigate the geometry of the base complex manifold of an effectively parametrized holomorphic family of stable Higgs bundles over a fixed compact Kähler manifold. The starting point of our study is Schumacher-Toma/Biswas-Schumacher’s curvature formulas for Weil-Petersson-type metrics, in Sect. 2, we give some applications of their formulas on the geometric properties of the base manifold. In Sect. 3, we calculate the curvature on the higher direct image bundle, which recovers Biswas-Schumacher’s curvature formula. In Sect. 4, we construct a smooth and strongly pseudo-convex complex Finsler metric for the base manifold, the corresponding holomorphic sectional curvature is calculated explicitly.
Item Description:Online veröffentlicht am 8. Juli 2021
Gesehen am 09.01.2024
Physical Description:Online Resource
ISSN:1432-0916
DOI:10.1007/s00220-021-04132-9