Curvature formulas related to a family of stable Higgs bundles
In this paper, we investigate the geometry of the base complex manifold of an effectively parametrized holomorphic family of stable Higgs bundles over a fixed compact Kähler manifold. The starting point of our study is Schumacher-Toma/Biswas-Schumacher’s curvature formulas for Weil-Petersson-type m...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
November 2021
|
| In: |
Communications in mathematical physics
Year: 2021, Volume: 387, Issue: 3, Pages: 1491-1514 |
| ISSN: | 1432-0916 |
| DOI: | 10.1007/s00220-021-04132-9 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00220-021-04132-9 Verlag, lizenzpflichtig, Volltext: https://link.springer.com/article/10.1007/s00220-021-04132-9 |
| Author Notes: | Zhi Hu, Pengfei Huang |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1816976687 | ||
| 003 | DE-627 | ||
| 005 | 20240109094314.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 220920s2021 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s00220-021-04132-9 |2 doi | |
| 035 | |a (DE-627)1816976687 | ||
| 035 | |a (DE-599)KXP1816976687 | ||
| 035 | |a (OCoLC)1360439393 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Hu, Zhi |e VerfasserIn |0 (DE-588)1268306134 |0 (DE-627)1816895474 |4 aut | |
| 245 | 1 | 0 | |a Curvature formulas related to a family of stable Higgs bundles |c Zhi Hu, Pengfei Huang |
| 264 | 1 | |c November 2021 | |
| 300 | |a 24 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Online veröffentlicht am 8. Juli 2021 | ||
| 500 | |a Gesehen am 09.01.2024 | ||
| 520 | |a In this paper, we investigate the geometry of the base complex manifold of an effectively parametrized holomorphic family of stable Higgs bundles over a fixed compact Kähler manifold. The starting point of our study is Schumacher-Toma/Biswas-Schumacher’s curvature formulas for Weil-Petersson-type metrics, in Sect. 2, we give some applications of their formulas on the geometric properties of the base manifold. In Sect. 3, we calculate the curvature on the higher direct image bundle, which recovers Biswas-Schumacher’s curvature formula. In Sect. 4, we construct a smooth and strongly pseudo-convex complex Finsler metric for the base manifold, the corresponding holomorphic sectional curvature is calculated explicitly. | ||
| 700 | 1 | |a Huang, Pengfei |e VerfasserIn |0 (DE-588)1268306142 |0 (DE-627)1816895482 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Communications in mathematical physics |d Berlin : Springer, 1965 |g 387(2021), 3, Seite 1491-1514 |h Online-Ressource |w (DE-627)253721628 |w (DE-600)1458931-X |w (DE-576)072372184 |x 1432-0916 |7 nnas |a Curvature formulas related to a family of stable Higgs bundles |
| 773 | 1 | 8 | |g volume:387 |g year:2021 |g number:3 |g pages:1491-1514 |g extent:24 |a Curvature formulas related to a family of stable Higgs bundles |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s00220-021-04132-9 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://link.springer.com/article/10.1007/s00220-021-04132-9 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20220920 | ||
| 993 | |a Article | ||
| 994 | |a 2021 | ||
| 998 | |g 1268306142 |a Huang, Pengfei |m 1268306142:Huang, Pengfei |d 110000 |d 110100 |d 110000 |d 110400 |d 700000 |d 728500 |e 110000PH1268306142 |e 110100PH1268306142 |e 110000PH1268306142 |e 110400PH1268306142 |e 700000PH1268306142 |e 728500PH1268306142 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |k 0/700000/ |k 1/700000/728500/ |p 2 |y j | ||
| 999 | |a KXP-PPN1816976687 |e 4190162256 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"person":[{"family":"Hu","given":"Zhi","display":"Hu, Zhi","roleDisplay":"VerfasserIn","role":"aut"},{"family":"Huang","given":"Pengfei","display":"Huang, Pengfei","roleDisplay":"VerfasserIn","role":"aut"}],"title":[{"title_sort":"Curvature formulas related to a family of stable Higgs bundles","title":"Curvature formulas related to a family of stable Higgs bundles"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Online veröffentlicht am 8. Juli 2021","Gesehen am 09.01.2024"],"recId":"1816976687","language":["eng"],"name":{"displayForm":["Zhi Hu, Pengfei Huang"]},"origin":[{"dateIssuedDisp":"November 2021","dateIssuedKey":"2021"}],"id":{"eki":["1816976687"],"doi":["10.1007/s00220-021-04132-9"]},"physDesc":[{"extent":"24 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedKey":"1965","publisher":"Springer","dateIssuedDisp":"1965-","publisherPlace":"Berlin ; Heidelberg"}],"id":{"zdb":["1458931-X"],"eki":["253721628"],"issn":["1432-0916"]},"pubHistory":["1.1965 -"],"part":{"text":"387(2021), 3, Seite 1491-1514","volume":"387","extent":"24","year":"2021","pages":"1491-1514","issue":"3"},"titleAlt":[{"title":"Mathematical physics"}],"disp":"Curvature formulas related to a family of stable Higgs bundlesCommunications in mathematical physics","type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 18.04.08"],"recId":"253721628","language":["eng"],"title":[{"title_sort":"Communications in mathematical physics","title":"Communications in mathematical physics"}]}]} | ||
| SRT | |a HUZHIHUANGCURVATUREF2021 | ||