Curvature formulas related to a family of stable Higgs bundles

In this paper, we investigate the geometry of the base complex manifold of an effectively parametrized holomorphic family of stable Higgs bundles over a fixed compact Kähler manifold. The starting point of our study is Schumacher-Toma/Biswas-Schumacher’s curvature formulas for Weil-Petersson-type m...

Full description

Saved in:
Bibliographic Details
Main Authors: Hu, Zhi (Author) , Huang, Pengfei (Author)
Format: Article (Journal)
Language:English
Published: November 2021
In: Communications in mathematical physics
Year: 2021, Volume: 387, Issue: 3, Pages: 1491-1514
ISSN:1432-0916
DOI:10.1007/s00220-021-04132-9
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00220-021-04132-9
Verlag, lizenzpflichtig, Volltext: https://link.springer.com/article/10.1007/s00220-021-04132-9
Get full text
Author Notes:Zhi Hu, Pengfei Huang

MARC

LEADER 00000caa a2200000 c 4500
001 1816976687
003 DE-627
005 20240109094314.0
007 cr uuu---uuuuu
008 220920s2021 xx |||||o 00| ||eng c
024 7 |a 10.1007/s00220-021-04132-9  |2 doi 
035 |a (DE-627)1816976687 
035 |a (DE-599)KXP1816976687 
035 |a (OCoLC)1360439393 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Hu, Zhi  |e VerfasserIn  |0 (DE-588)1268306134  |0 (DE-627)1816895474  |4 aut 
245 1 0 |a Curvature formulas related to a family of stable Higgs bundles  |c Zhi Hu, Pengfei Huang 
264 1 |c November 2021 
300 |a 24 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online veröffentlicht am 8. Juli 2021 
500 |a Gesehen am 09.01.2024 
520 |a In this paper, we investigate the geometry of the base complex manifold of an effectively parametrized holomorphic family of stable Higgs bundles over a fixed compact Kähler manifold. The starting point of our study is Schumacher-Toma/Biswas-Schumacher’s curvature formulas for Weil-Petersson-type metrics, in Sect. 2, we give some applications of their formulas on the geometric properties of the base manifold. In Sect. 3, we calculate the curvature on the higher direct image bundle, which recovers Biswas-Schumacher’s curvature formula. In Sect. 4, we construct a smooth and strongly pseudo-convex complex Finsler metric for the base manifold, the corresponding holomorphic sectional curvature is calculated explicitly. 
700 1 |a Huang, Pengfei  |e VerfasserIn  |0 (DE-588)1268306142  |0 (DE-627)1816895482  |4 aut 
773 0 8 |i Enthalten in  |t Communications in mathematical physics  |d Berlin : Springer, 1965  |g 387(2021), 3, Seite 1491-1514  |h Online-Ressource  |w (DE-627)253721628  |w (DE-600)1458931-X  |w (DE-576)072372184  |x 1432-0916  |7 nnas  |a Curvature formulas related to a family of stable Higgs bundles 
773 1 8 |g volume:387  |g year:2021  |g number:3  |g pages:1491-1514  |g extent:24  |a Curvature formulas related to a family of stable Higgs bundles 
856 4 0 |u https://doi.org/10.1007/s00220-021-04132-9  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://link.springer.com/article/10.1007/s00220-021-04132-9  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220920 
993 |a Article 
994 |a 2021 
998 |g 1268306142  |a Huang, Pengfei  |m 1268306142:Huang, Pengfei  |d 110000  |d 110100  |d 110000  |d 110400  |d 700000  |d 728500  |e 110000PH1268306142  |e 110100PH1268306142  |e 110000PH1268306142  |e 110400PH1268306142  |e 700000PH1268306142  |e 728500PH1268306142  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |k 0/700000/  |k 1/700000/728500/  |p 2  |y j 
999 |a KXP-PPN1816976687  |e 4190162256 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"family":"Hu","given":"Zhi","display":"Hu, Zhi","roleDisplay":"VerfasserIn","role":"aut"},{"family":"Huang","given":"Pengfei","display":"Huang, Pengfei","roleDisplay":"VerfasserIn","role":"aut"}],"title":[{"title_sort":"Curvature formulas related to a family of stable Higgs bundles","title":"Curvature formulas related to a family of stable Higgs bundles"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Online veröffentlicht am 8. Juli 2021","Gesehen am 09.01.2024"],"recId":"1816976687","language":["eng"],"name":{"displayForm":["Zhi Hu, Pengfei Huang"]},"origin":[{"dateIssuedDisp":"November 2021","dateIssuedKey":"2021"}],"id":{"eki":["1816976687"],"doi":["10.1007/s00220-021-04132-9"]},"physDesc":[{"extent":"24 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedKey":"1965","publisher":"Springer","dateIssuedDisp":"1965-","publisherPlace":"Berlin ; Heidelberg"}],"id":{"zdb":["1458931-X"],"eki":["253721628"],"issn":["1432-0916"]},"pubHistory":["1.1965 -"],"part":{"text":"387(2021), 3, Seite 1491-1514","volume":"387","extent":"24","year":"2021","pages":"1491-1514","issue":"3"},"titleAlt":[{"title":"Mathematical physics"}],"disp":"Curvature formulas related to a family of stable Higgs bundlesCommunications in mathematical physics","type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 18.04.08"],"recId":"253721628","language":["eng"],"title":[{"title_sort":"Communications in mathematical physics","title":"Communications in mathematical physics"}]}]} 
SRT |a HUZHIHUANGCURVATUREF2021