Curvature formulas related to a family of stable Higgs bundles

In this paper, we investigate the geometry of the base complex manifold of an effectively parametrized holomorphic family of stable Higgs bundles over a fixed compact Kähler manifold. The starting point of our study is Schumacher-Toma/Biswas-Schumacher’s curvature formulas for Weil-Petersson-type m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hu, Zhi (VerfasserIn) , Huang, Pengfei (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: November 2021
In: Communications in mathematical physics
Year: 2021, Jahrgang: 387, Heft: 3, Pages: 1491-1514
ISSN:1432-0916
DOI:10.1007/s00220-021-04132-9
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00220-021-04132-9
Verlag, lizenzpflichtig, Volltext: https://link.springer.com/article/10.1007/s00220-021-04132-9
Volltext
Verfasserangaben:Zhi Hu, Pengfei Huang
Beschreibung
Zusammenfassung:In this paper, we investigate the geometry of the base complex manifold of an effectively parametrized holomorphic family of stable Higgs bundles over a fixed compact Kähler manifold. The starting point of our study is Schumacher-Toma/Biswas-Schumacher’s curvature formulas for Weil-Petersson-type metrics, in Sect. 2, we give some applications of their formulas on the geometric properties of the base manifold. In Sect. 3, we calculate the curvature on the higher direct image bundle, which recovers Biswas-Schumacher’s curvature formula. In Sect. 4, we construct a smooth and strongly pseudo-convex complex Finsler metric for the base manifold, the corresponding holomorphic sectional curvature is calculated explicitly.
Beschreibung:Online veröffentlicht am 8. Juli 2021
Gesehen am 09.01.2024
Beschreibung:Online Resource
ISSN:1432-0916
DOI:10.1007/s00220-021-04132-9