Moduli spaces of parabolic bundles over P1 with five marked points
This paper considers the moduli spaces (stacks) of parabolic bundles (parabolic logarithmic flat bundles with given spectrum, parabolic regular Higgs bundles) with rank 2 and degree 1 over P1 with five marked points. The foliation and stratification structures on these moduli spaces (stacks) are inv...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article (Journal) Chapter/Article |
| Language: | English |
| Published: |
20 Aug 2021
|
| In: |
Arxiv
Year: 2021, Pages: 1-36 |
| DOI: | 10.48550/arXiv.2108.08994 |
| Online Access: | Verlag, kostenfrei, Volltext: https://doi.org/10.48550/arXiv.2108.08994 Verlag, kostenfrei, Volltext: http://arxiv.org/abs/2108.08994 |
| Author Notes: | Zhi Hu, Pengfei Huang, and Runhong Zong |
| Summary: | This paper considers the moduli spaces (stacks) of parabolic bundles (parabolic logarithmic flat bundles with given spectrum, parabolic regular Higgs bundles) with rank 2 and degree 1 over P1 with five marked points. The foliation and stratification structures on these moduli spaces (stacks) are investigated. In paricular, we confirm Simpson's conjecture for moduli space of parabolic logarithmic flat bundles with certain non-special weight system. |
|---|---|
| Item Description: | Im Titel erscheint der Begriff P1 als mathematisches Zeichen für die Menge der Primzahlen mit hochgestellter Ziffer 1 Artikelversion vom 22. August 2023 Gesehen am 09.01.2024 |
| Physical Description: | Online Resource |
| DOI: | 10.48550/arXiv.2108.08994 |