jVMC: Versatile and performant variational Monte Carlo leveraging automated differentiation and GPU acceleration

The introduction of Neural Quantum States (NQS) has recently given a new twist to variational Monte Carlo (VMC). The ability to systematically reduce the bias of the wave function ansatz renders the approach widely applicable. However, performant implementations are crucial to reach the numerical st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schmitt, Markus (VerfasserIn) , Reh, Moritz (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 14 Dec 2021
In: Arxiv
Year: 2021, Pages: 1-33
DOI:10.48550/arXiv.2108.03409
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2108.03409
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2108.03409
Volltext
Verfasserangaben:Markus Schmitt and Moritz Reh
Beschreibung
Zusammenfassung:The introduction of Neural Quantum States (NQS) has recently given a new twist to variational Monte Carlo (VMC). The ability to systematically reduce the bias of the wave function ansatz renders the approach widely applicable. However, performant implementations are crucial to reach the numerical state of the art. Here, we present a Python codebase that supports arbitrary NQS architectures and model Hamiltonians. Additionally leveraging automatic differentiation, just-in-time compilation to accelerators, and distributed computing, it is designed to facilitate the composition of efficient NQS algorithms.
Beschreibung:Gesehen am 23.09.2022
Beschreibung:Online Resource
DOI:10.48550/arXiv.2108.03409