Positive surface group representations in PO(p,q)
We show that $\Theta$-positive Anosov representations $\rho:\Gamma\to\mathsf{PO}(p,q)$ of a surface group $\Gamma$ satisfy root vs weight collar lemmas for all the Anosov roots, and are positively ratioed with respect to all such roots. From this we deduce that $\Theta$-positive Anosov representatio...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article (Journal) Chapter/Article |
| Language: | English |
| Published: |
28 Jun 2021
|
| In: |
Arxiv
Year: 2021, Pages: 1-28 |
| DOI: | 10.48550/arXiv.2106.14725 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2106.14725 Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2106.14725 |
| Author Notes: | Jonas Beyrer and Beatrice Pozzetti |
| Summary: | We show that $\Theta$-positive Anosov representations $\rho:\Gamma\to\mathsf{PO}(p,q)$ of a surface group $\Gamma$ satisfy root vs weight collar lemmas for all the Anosov roots, and are positively ratioed with respect to all such roots. From this we deduce that $\Theta$-positive Anosov representations $\rho:\Gamma\to\mathsf{PO}(p,q)$ form connected components of character varieties. |
|---|---|
| Item Description: | Gesehen am 23.09.2022 |
| Physical Description: | Online Resource |
| DOI: | 10.48550/arXiv.2106.14725 |