Conditional invertible neural networks for diverse image-to-image translation

We introduce a new architecture called a conditional invertible neural network (cINN), and use it to address the task of diverse image-to-image translation for natural images. This is not easily possible with existing INN models due to some fundamental limitations. The cINN combines the purely gener...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ardizzone, Lynton (VerfasserIn) , Kruse, Jakob (VerfasserIn) , Lüth, Carsten (VerfasserIn) , Bracher, Niels (VerfasserIn) , Rother, Carsten (VerfasserIn) , Köthe, Ullrich (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 5 May 2021
In: Arxiv
Year: 2021, Pages: 1-15
DOI:10.48550/arXiv.2105.02104
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2105.02104
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2105.02104
Volltext
Verfasserangaben:Lynton Ardizzone, Jakob Kruse, Carsten Lüth, Niels Bracher, Carsten Rother, Ullrich Köthe
Beschreibung
Zusammenfassung:We introduce a new architecture called a conditional invertible neural network (cINN), and use it to address the task of diverse image-to-image translation for natural images. This is not easily possible with existing INN models due to some fundamental limitations. The cINN combines the purely generative INN model with an unconstrained feed-forward network, which efficiently preprocesses the conditioning image into maximally informative features. All parameters of a cINN are jointly optimized with a stable, maximum likelihood-based training procedure. Even though INN-based models have received far less attention in the literature than GANs, they have been shown to have some remarkable properties absent in GANs, e.g. apparent immunity to mode collapse. We find that our cINNs leverage these properties for image-to-image translation, demonstrated on day to night translation and image colorization. Furthermore, we take advantage of our bidirectional cINN architecture to explore and manipulate emergent properties of the latent space, such as changing the image style in an intuitive way.
Beschreibung:Gesehen am 28.09.2022
Beschreibung:Online Resource
DOI:10.48550/arXiv.2105.02104