Conditional invertible neural networks for diverse image-to-image translation
We introduce a new architecture called a conditional invertible neural network (cINN), and use it to address the task of diverse image-to-image translation for natural images. This is not easily possible with existing INN models due to some fundamental limitations. The cINN combines the purely gener...
Gespeichert in:
| Hauptverfasser: | , , , , , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
5 May 2021
|
| In: |
Arxiv
Year: 2021, Pages: 1-15 |
| DOI: | 10.48550/arXiv.2105.02104 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2105.02104 Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2105.02104 |
| Verfasserangaben: | Lynton Ardizzone, Jakob Kruse, Carsten Lüth, Niels Bracher, Carsten Rother, Ullrich Köthe |
Search Result 1
Conditional invertible neural networks for diverse image-to-image translation
Kapitel/Artikel
Konferenzschrift