The local-orbifold correspondence for simple normal crossings pairs

For X a smooth projective variety and D=D1+…+Dn a simple normal crossings divisor, we establish a precise cycle-level correspondence between the genus zero local Gromov-Witten theory of the bundle ⊕ni=1OX(−Di) and the maximal contact Gromov-Witten theory of the multi-root stack XD,r⃗ . The proof is...

Full description

Saved in:
Bibliographic Details
Main Authors: Battistella, Luca (Author) , Nabijou, Navid (Author) , Tseng, Hsian-Hua (Author) , You, Fenglong (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 16 Mar 2021
In: Arxiv
Year: 2021, Pages: 1-14
DOI:10.48550/arXiv.2103.09299
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.48550/arXiv.2103.09299
Verlag, kostenfrei, Volltext: http://arxiv.org/abs/2103.09299
Get full text
Author Notes:Luca Battistella, Navid Nabijou, Hsian-Hua Tseng and Fenglong You
Description
Summary:For X a smooth projective variety and D=D1+…+Dn a simple normal crossings divisor, we establish a precise cycle-level correspondence between the genus zero local Gromov-Witten theory of the bundle ⊕ni=1OX(−Di) and the maximal contact Gromov-Witten theory of the multi-root stack XD,r⃗ . The proof is an implementation of the rank reduction strategy. We use this point of view to clarify the relationship between logarithmic and orbifold invariants.
Item Description:Artikelversion v3 vom 22. Februar 2022
Gesehen am 09.01.2024
Physical Description:Online Resource
DOI:10.48550/arXiv.2103.09299