The local-orbifold correspondence for simple normal crossings pairs
For X a smooth projective variety and D=D1+…+Dn a simple normal crossings divisor, we establish a precise cycle-level correspondence between the genus zero local Gromov-Witten theory of the bundle ⊕ni=1OX(−Di) and the maximal contact Gromov-Witten theory of the multi-root stack XD,r⃗ . The proof is...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article (Journal) Chapter/Article |
| Language: | English |
| Published: |
16 Mar 2021
|
| In: |
Arxiv
Year: 2021, Pages: 1-14 |
| DOI: | 10.48550/arXiv.2103.09299 |
| Online Access: | Verlag, kostenfrei, Volltext: https://doi.org/10.48550/arXiv.2103.09299 Verlag, kostenfrei, Volltext: http://arxiv.org/abs/2103.09299 |
| Author Notes: | Luca Battistella, Navid Nabijou, Hsian-Hua Tseng and Fenglong You |
| Summary: | For X a smooth projective variety and D=D1+…+Dn a simple normal crossings divisor, we establish a precise cycle-level correspondence between the genus zero local Gromov-Witten theory of the bundle ⊕ni=1OX(−Di) and the maximal contact Gromov-Witten theory of the multi-root stack XD,r⃗ . The proof is an implementation of the rank reduction strategy. We use this point of view to clarify the relationship between logarithmic and orbifold invariants. |
|---|---|
| Item Description: | Artikelversion v3 vom 22. Februar 2022 Gesehen am 09.01.2024 |
| Physical Description: | Online Resource |
| DOI: | 10.48550/arXiv.2103.09299 |