QMeS-Derivation: mathematica package for the symbolic derivation of functional equations

We present the Mathematica package QMeS-Derivation. It derives symbolic functional equations from a given master equation. The latter include functional renormalisation group equations, Dyson-Schwinger equations, Slavnov-Taylor and Ward identities and their modifications in the presence of momentum...

Full description

Saved in:
Bibliographic Details
Main Authors: Pawlowski, Jan M. (Author) , Schneider, Coralie Sophie (Author) , Wink, Nicolas (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 2 Feb 2021
In: Arxiv
Year: 2021, Pages: 1-18
DOI:10.48550/arXiv.2102.01410
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.48550/arXiv.2102.01410
Verlag, kostenfrei, Volltext: http://arxiv.org/abs/2102.01410
Get full text
Author Notes:Jan M. Pawlowski, Coralie S. Schneider, and Nicolas Wink
Description
Summary:We present the Mathematica package QMeS-Derivation. It derives symbolic functional equations from a given master equation. The latter include functional renormalisation group equations, Dyson-Schwinger equations, Slavnov-Taylor and Ward identities and their modifications in the presence of momentum cutoffs. The modules allow to derive the functional equations, take functional derivatives, trace over field space, apply a given truncation scheme, and do momentum routings while keeping track of prefactors and signs that arise from fermionic commutation relations. The package furthermore contains an installer as well as Mathematica notebooks with showcase examples.
Item Description:Artikelversion vom 8. Februar 2022
Gesehen am 09.01.2024
Physical Description:Online Resource
DOI:10.48550/arXiv.2102.01410