QMeS-Derivation: mathematica package for the symbolic derivation of functional equations
We present the Mathematica package QMeS-Derivation. It derives symbolic functional equations from a given master equation. The latter include functional renormalisation group equations, Dyson-Schwinger equations, Slavnov-Taylor and Ward identities and their modifications in the presence of momentum...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
2 Feb 2021
|
| In: |
Arxiv
Year: 2021, Pages: 1-18 |
| DOI: | 10.48550/arXiv.2102.01410 |
| Online-Zugang: | Verlag, kostenfrei, Volltext: https://doi.org/10.48550/arXiv.2102.01410 Verlag, kostenfrei, Volltext: http://arxiv.org/abs/2102.01410 |
| Verfasserangaben: | Jan M. Pawlowski, Coralie S. Schneider, and Nicolas Wink |
| Zusammenfassung: | We present the Mathematica package QMeS-Derivation. It derives symbolic functional equations from a given master equation. The latter include functional renormalisation group equations, Dyson-Schwinger equations, Slavnov-Taylor and Ward identities and their modifications in the presence of momentum cutoffs. The modules allow to derive the functional equations, take functional derivatives, trace over field space, apply a given truncation scheme, and do momentum routings while keeping track of prefactors and signs that arise from fermionic commutation relations. The package furthermore contains an installer as well as Mathematica notebooks with showcase examples. |
|---|---|
| Beschreibung: | Artikelversion vom 8. Februar 2022 Gesehen am 09.01.2024 |
| Beschreibung: | Online Resource |
| DOI: | 10.48550/arXiv.2102.01410 |