QMeS-Derivation: mathematica package for the symbolic derivation of functional equations
We present the Mathematica package QMeS-Derivation. It derives symbolic functional equations from a given master equation. The latter include functional renormalisation group equations, Dyson-Schwinger equations, Slavnov-Taylor and Ward identities and their modifications in the presence of momentum...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article (Journal) Chapter/Article |
| Language: | English |
| Published: |
2 Feb 2021
|
| In: |
Arxiv
Year: 2021, Pages: 1-18 |
| DOI: | 10.48550/arXiv.2102.01410 |
| Online Access: | Verlag, kostenfrei, Volltext: https://doi.org/10.48550/arXiv.2102.01410 Verlag, kostenfrei, Volltext: http://arxiv.org/abs/2102.01410 |
| Author Notes: | Jan M. Pawlowski, Coralie S. Schneider, and Nicolas Wink |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1817946552 | ||
| 003 | DE-627 | ||
| 005 | 20240109132749.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 221004s2021 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.48550/arXiv.2102.01410 |2 doi | |
| 035 | |a (DE-627)1817946552 | ||
| 035 | |a (DE-599)KXP1817946552 | ||
| 035 | |a (OCoLC)1361714113 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Pawlowski, Jan M. |d 1965- |e VerfasserIn |0 (DE-588)1047077388 |0 (DE-627)777525925 |0 (DE-576)400331381 |4 aut | |
| 245 | 1 | 0 | |a QMeS-Derivation |b mathematica package for the symbolic derivation of functional equations |c Jan M. Pawlowski, Coralie S. Schneider, and Nicolas Wink |
| 264 | 1 | |c 2 Feb 2021 | |
| 300 | |b Illustrationen | ||
| 300 | |a 18 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Artikelversion vom 8. Februar 2022 | ||
| 500 | |a Gesehen am 09.01.2024 | ||
| 520 | |a We present the Mathematica package QMeS-Derivation. It derives symbolic functional equations from a given master equation. The latter include functional renormalisation group equations, Dyson-Schwinger equations, Slavnov-Taylor and Ward identities and their modifications in the presence of momentum cutoffs. The modules allow to derive the functional equations, take functional derivatives, trace over field space, apply a given truncation scheme, and do momentum routings while keeping track of prefactors and signs that arise from fermionic commutation relations. The package furthermore contains an installer as well as Mathematica notebooks with showcase examples. | ||
| 650 | 4 | |a High Energy Physics - Phenomenology | |
| 650 | 4 | |a High Energy Physics - Theory | |
| 650 | 4 | |a Physics - Computational Physics | |
| 700 | 1 | |a Schneider, Coralie Sophie |d 1995- |e VerfasserIn |0 (DE-588)1197711287 |0 (DE-627)1679443933 |4 aut | |
| 700 | 1 | |a Wink, Nicolas |d 1994- |e VerfasserIn |0 (DE-588)1153918382 |0 (DE-627)1015518893 |0 (DE-576)500627967 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2021), Artikel-ID 2102.01410, Seite 1-18 |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a QMeS-Derivation mathematica package for the symbolic derivation of functional equations |
| 773 | 1 | 8 | |g year:2021 |g elocationid:2102.01410 |g pages:1-18 |g extent:18 |a QMeS-Derivation mathematica package for the symbolic derivation of functional equations |
| 856 | 4 | 0 | |u https://doi.org/10.48550/arXiv.2102.01410 |x Verlag |x Resolving-System |z kostenfrei |3 Volltext |
| 856 | 4 | 0 | |u http://arxiv.org/abs/2102.01410 |x Verlag |z kostenfrei |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20221004 | ||
| 993 | |a Article | ||
| 998 | |g 1153918382 |a Wink, Nicolas |m 1153918382:Wink, Nicolas |d 130000 |d 130300 |e 130000PW1153918382 |e 130300PW1153918382 |k 0/130000/ |k 1/130000/130300/ |p 3 |y j | ||
| 998 | |g 1197711287 |a Schneider, Coralie Sophie |m 1197711287:Schneider, Coralie Sophie |d 130000 |d 130300 |e 130000PS1197711287 |e 130300PS1197711287 |k 0/130000/ |k 1/130000/130300/ |p 2 | ||
| 998 | |g 1047077388 |a Pawlowski, Jan M. |m 1047077388:Pawlowski, Jan M. |d 130000 |d 130300 |d 700000 |d 728500 |e 130000PP1047077388 |e 130300PP1047077388 |e 700000PP1047077388 |e 728500PP1047077388 |k 0/130000/ |k 1/130000/130300/ |k 0/700000/ |k 1/700000/728500/ |p 1 |x j | ||
| 999 | |a KXP-PPN1817946552 |e 4194097599 | ||
| BIB | |a Y | ||
| JSO | |a {"id":{"eki":["1817946552"],"doi":["10.48550/arXiv.2102.01410"]},"name":{"displayForm":["Jan M. Pawlowski, Coralie S. Schneider, and Nicolas Wink"]},"language":["eng"],"type":{"media":"Online-Ressource","bibl":"chapter"},"recId":"1817946552","person":[{"family":"Pawlowski","given":"Jan M.","display":"Pawlowski, Jan M.","role":"aut"},{"family":"Schneider","given":"Coralie Sophie","role":"aut","display":"Schneider, Coralie Sophie"},{"family":"Wink","given":"Nicolas","display":"Wink, Nicolas","role":"aut"}],"title":[{"subtitle":"mathematica package for the symbolic derivation of functional equations","title_sort":"QMeS-Derivation","title":"QMeS-Derivation"}],"relHost":[{"disp":"QMeS-Derivation mathematica package for the symbolic derivation of functional equationsArxiv","titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"edited-book"},"part":{"year":"2021","extent":"18","text":"(2021), Artikel-ID 2102.01410, Seite 1-18","pages":"1-18"},"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"pubHistory":["1991 -"],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"recId":"509006531","physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisher":"Cornell University ; Arxiv.org","dateIssuedDisp":"1991-","dateIssuedKey":"1991","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}],"note":["Gesehen am 28.05.2024"]}],"physDesc":[{"noteIll":"Illustrationen","extent":"18 S."}],"note":["Artikelversion vom 8. Februar 2022","Gesehen am 09.01.2024"],"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"2 Feb 2021"}]} | ||
| SRT | |a PAWLOWSKIJQMESDERIVA2202 | ||