Homogeneous multigrid for embedded discontinuous Galerkin methods
We formulate a multigrid method for an embedded discontinuous Galerkin (EDG) discretization scheme for Poisson’s equation. This multigrid method is homogeneous in the sense that it uses the same discretization scheme on all levels. In particular, we use the injection operator developed in Lu et al....
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
September 2022
|
| In: |
BIT
Year: 2022, Volume: 62, Issue: 3, Pages: 1029-1048 |
| ISSN: | 1572-9125 |
| DOI: | 10.1007/s10543-021-00902-y |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s10543-021-00902-y Verlag, lizenzpflichtig, Volltext: https://link.springer.com/article/10.1007/s10543-021-00902-y |
| Author Notes: | Peipei Lu, Andreas Rupp, Guido Kanschat |
| Summary: | We formulate a multigrid method for an embedded discontinuous Galerkin (EDG) discretization scheme for Poisson’s equation. This multigrid method is homogeneous in the sense that it uses the same discretization scheme on all levels. In particular, we use the injection operator developed in Lu et al. (IMA J Numer Anal, 2021) for HDG and show optimal convergence rates under the assumption of elliptic regularity. Our analytical findings are underlined by numerical experiments. |
|---|---|
| Item Description: | Online veröffentlicht: 25. November 2021 Gesehen am 10.01.2024 |
| Physical Description: | Online Resource |
| ISSN: | 1572-9125 |
| DOI: | 10.1007/s10543-021-00902-y |