Homogeneous multigrid for embedded discontinuous Galerkin methods

We formulate a multigrid method for an embedded discontinuous Galerkin (EDG) discretization scheme for Poisson’s equation. This multigrid method is homogeneous in the sense that it uses the same discretization scheme on all levels. In particular, we use the injection operator developed in Lu et al....

Full description

Saved in:
Bibliographic Details
Main Authors: Lu, Peipei (Author) , Rupp, Andreas (Author) , Kanschat, Guido (Author)
Format: Article (Journal)
Language:English
Published: September 2022
In: BIT
Year: 2022, Volume: 62, Issue: 3, Pages: 1029-1048
ISSN:1572-9125
DOI:10.1007/s10543-021-00902-y
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s10543-021-00902-y
Verlag, lizenzpflichtig, Volltext: https://link.springer.com/article/10.1007/s10543-021-00902-y
Get full text
Author Notes:Peipei Lu, Andreas Rupp, Guido Kanschat
Description
Summary:We formulate a multigrid method for an embedded discontinuous Galerkin (EDG) discretization scheme for Poisson’s equation. This multigrid method is homogeneous in the sense that it uses the same discretization scheme on all levels. In particular, we use the injection operator developed in Lu et al. (IMA J Numer Anal, 2021) for HDG and show optimal convergence rates under the assumption of elliptic regularity. Our analytical findings are underlined by numerical experiments.
Item Description:Online veröffentlicht: 25. November 2021
Gesehen am 10.01.2024
Physical Description:Online Resource
ISSN:1572-9125
DOI:10.1007/s10543-021-00902-y