Homogeneous multigrid for embedded discontinuous Galerkin methods
We formulate a multigrid method for an embedded discontinuous Galerkin (EDG) discretization scheme for Poisson’s equation. This multigrid method is homogeneous in the sense that it uses the same discretization scheme on all levels. In particular, we use the injection operator developed in Lu et al....
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
September 2022
|
| In: |
BIT
Year: 2022, Jahrgang: 62, Heft: 3, Pages: 1029-1048 |
| ISSN: | 1572-9125 |
| DOI: | 10.1007/s10543-021-00902-y |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s10543-021-00902-y Verlag, lizenzpflichtig, Volltext: https://link.springer.com/article/10.1007/s10543-021-00902-y |
| Verfasserangaben: | Peipei Lu, Andreas Rupp, Guido Kanschat |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1817948067 | ||
| 003 | DE-627 | ||
| 005 | 20240110082931.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 221004s2022 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s10543-021-00902-y |2 doi | |
| 035 | |a (DE-627)1817948067 | ||
| 035 | |a (DE-599)KXP1817948067 | ||
| 035 | |a (OCoLC)1361696084 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Lu, Peipei |e VerfasserIn |0 (DE-588)126913549X |0 (DE-627)1817800477 |4 aut | |
| 245 | 1 | 0 | |a Homogeneous multigrid for embedded discontinuous Galerkin methods |c Peipei Lu, Andreas Rupp, Guido Kanschat |
| 264 | 1 | |c September 2022 | |
| 300 | |a 20 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Online veröffentlicht: 25. November 2021 | ||
| 500 | |a Gesehen am 10.01.2024 | ||
| 520 | |a We formulate a multigrid method for an embedded discontinuous Galerkin (EDG) discretization scheme for Poisson’s equation. This multigrid method is homogeneous in the sense that it uses the same discretization scheme on all levels. In particular, we use the injection operator developed in Lu et al. (IMA J Numer Anal, 2021) for HDG and show optimal convergence rates under the assumption of elliptic regularity. Our analytical findings are underlined by numerical experiments. | ||
| 650 | 4 | |a 65F10 | |
| 650 | 4 | |a 65N30 | |
| 650 | 4 | |a 65N50 | |
| 650 | 4 | |a Embedded discontinuous Galerkin | |
| 650 | 4 | |a Multigird method | |
| 650 | 4 | |a Poisson equation | |
| 700 | 1 | |a Rupp, Andreas |d 1992- |e VerfasserIn |0 (DE-588)1191198812 |0 (DE-627)1669602907 |4 aut | |
| 700 | 1 | |a Kanschat, Guido |e VerfasserIn |0 (DE-588)102535334X |0 (DE-627)72215612X |0 (DE-576)175755949 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t BIT |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1961 |g 62(2022), 3, Seite 1029-1048 |h Online-Ressource |w (DE-627)265778360 |w (DE-600)1465706-5 |w (DE-576)077608526 |x 1572-9125 |7 nnas |a Homogeneous multigrid for embedded discontinuous Galerkin methods |
| 773 | 1 | 8 | |g volume:62 |g year:2022 |g number:3 |g pages:1029-1048 |g extent:20 |a Homogeneous multigrid for embedded discontinuous Galerkin methods |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s10543-021-00902-y |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://link.springer.com/article/10.1007/s10543-021-00902-y |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20221004 | ||
| 993 | |a Article | ||
| 994 | |a 2022 | ||
| 998 | |g 102535334X |a Kanschat, Guido |m 102535334X:Kanschat, Guido |d 700000 |d 708000 |d 700000 |d 728500 |e 700000PK102535334X |e 708000PK102535334X |e 700000PK102535334X |e 728500PK102535334X |k 0/700000/ |k 1/700000/708000/ |k 0/700000/ |k 1/700000/728500/ |p 3 |y j | ||
| 998 | |g 1191198812 |a Rupp, Andreas |m 1191198812:Rupp, Andreas |d 130000 |d 700000 |d 728500 |e 130000PR1191198812 |e 700000PR1191198812 |e 728500PR1191198812 |k 0/130000/ |k 0/700000/ |k 1/700000/728500/ |p 2 | ||
| 999 | |a KXP-PPN1817948067 |e 4194101170 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"note":["Online veröffentlicht: 25. November 2021","Gesehen am 10.01.2024"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"recId":"1817948067","title":[{"title_sort":"Homogeneous multigrid for embedded discontinuous Galerkin methods","title":"Homogeneous multigrid for embedded discontinuous Galerkin methods"}],"person":[{"family":"Lu","given":"Peipei","display":"Lu, Peipei","roleDisplay":"VerfasserIn","role":"aut"},{"role":"aut","display":"Rupp, Andreas","roleDisplay":"VerfasserIn","given":"Andreas","family":"Rupp"},{"roleDisplay":"VerfasserIn","display":"Kanschat, Guido","role":"aut","family":"Kanschat","given":"Guido"}],"physDesc":[{"extent":"20 S."}],"relHost":[{"name":{"displayForm":["BIT Foundation"]},"origin":[{"publisherPlace":"Dordrecht [u.a.] ; Lisse ; Dordrecht [u.a.]","dateIssuedKey":"1961","publisher":"Springer Science + Business Media B.V ; Swets & Zeitlinger ; Kluwer Acad. Publ.","dateIssuedDisp":"1961-"}],"id":{"doi":["10.1007/10543.1572-9125"],"eki":["265778360"],"zdb":["1465706-5"],"issn":["1572-9125"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"BIT","title":"BIT","subtitle":"numerical mathematics ; the leading applied mathematics journal for all computational mathematicians"}],"disp":"Homogeneous multigrid for embedded discontinuous Galerkin methodsBIT","type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 01.03.2023"],"recId":"265778360","language":["eng"],"pubHistory":["1.1961 -"],"part":{"extent":"20","text":"62(2022), 3, Seite 1029-1048","volume":"62","issue":"3","pages":"1029-1048","year":"2022"},"titleAlt":[{"title":"BIT numerical mathematics"}]}],"origin":[{"dateIssuedDisp":"September 2022","dateIssuedKey":"2022"}],"id":{"eki":["1817948067"],"doi":["10.1007/s10543-021-00902-y"]},"name":{"displayForm":["Peipei Lu, Andreas Rupp, Guido Kanschat"]}} | ||
| SRT | |a LUPEIPEIRUHOMOGENEOU2022 | ||