Ergodicity of the mapping class group action on super-maximal representations

This note investigates the dynamics of the mapping class group action on the character variety of super-maximal representations of the fundamental group of a punctured sphere into PSLp2, Rq, discovered by Deroin and Tholozan. We apply symplectic methods developed by Goldman and Xia to prove that the...

Full description

Saved in:
Bibliographic Details
Main Author: Maret, Arnaud (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 12 Oct 2022
Edition:Version v2
In: Arxiv
Year: 2020, Pages: 1-22
DOI:10.48550/arXiv.2012.05775
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.48550/arXiv.2012.05775
Verlag, kostenfrei, Volltext: http://arxiv.org/abs/2012.05775
Get full text
Author Notes:Arnaud Maret
Description
Summary:This note investigates the dynamics of the mapping class group action on the character variety of super-maximal representations of the fundamental group of a punctured sphere into PSLp2, Rq, discovered by Deroin and Tholozan. We apply symplectic methods developed by Goldman and Xia to prove that the action is ergodic.
Item Description:Online veröffentlicht am 10. Dezember 2020
Gesehen am 10.01.2024
Physical Description:Online Resource
DOI:10.48550/arXiv.2012.05775