The self-similar evolution of stationary point processes via persistent homology

Persistent homology provides a robust methodology to infer topological structures from point cloud data. Here we explore the persistent homology of point clouds embedded into a probabilistic setting, exploiting the theory of point processes. We provide variants of notions of ergodicity and investiga...

Full description

Saved in:
Bibliographic Details
Main Authors: Spitz, Daniel (Author) , Wienhard, Anna (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 4 Aug 2023
Edition:Version v3
In: Arxiv
Year: 2023, Pages: 1-39
DOI:10.48550/arXiv.2012.05751
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.48550/arXiv.2012.05751
Verlag, kostenfrei, Volltext: http://arxiv.org/abs/2012.05751
Get full text
Author Notes:Daniel Spitz and Anna Wienhard
Description
Summary:Persistent homology provides a robust methodology to infer topological structures from point cloud data. Here we explore the persistent homology of point clouds embedded into a probabilistic setting, exploiting the theory of point processes. We provide variants of notions of ergodicity and investigate measures on the space of persistence diagrams. In particular we introduce the notion of self-similar scaling of persistence diagram expectation measures and prove a packing relation for the occurring dynamical scaling exponents. As a byproduct we generalize the strong law of large numbers for persistent Betti numbers proven in [Hiraoka et al., Ann. Appl. Probab. 28(5), 2018] for averages over cubes to arbitrary convex averaging sequences.
Item Description:Online veröffentlicht am 10. Dezember 2020
Gesehen am 10.01.2024
Physical Description:Online Resource
DOI:10.48550/arXiv.2012.05751