The self-similar evolution of stationary point processes via persistent homology

Persistent homology provides a robust methodology to infer topological structures from point cloud data. Here we explore the persistent homology of point clouds embedded into a probabilistic setting, exploiting the theory of point processes. We provide variants of notions of ergodicity and investiga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Spitz, Daniel (VerfasserIn) , Wienhard, Anna (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 4 Aug 2023
Ausgabe:Version v3
In: Arxiv
Year: 2023, Pages: 1-39
DOI:10.48550/arXiv.2012.05751
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.48550/arXiv.2012.05751
Verlag, kostenfrei, Volltext: http://arxiv.org/abs/2012.05751
Volltext
Verfasserangaben:Daniel Spitz and Anna Wienhard
Beschreibung
Zusammenfassung:Persistent homology provides a robust methodology to infer topological structures from point cloud data. Here we explore the persistent homology of point clouds embedded into a probabilistic setting, exploiting the theory of point processes. We provide variants of notions of ergodicity and investigate measures on the space of persistence diagrams. In particular we introduce the notion of self-similar scaling of persistence diagram expectation measures and prove a packing relation for the occurring dynamical scaling exponents. As a byproduct we generalize the strong law of large numbers for persistent Betti numbers proven in [Hiraoka et al., Ann. Appl. Probab. 28(5), 2018] for averages over cubes to arbitrary convex averaging sequences.
Beschreibung:Online veröffentlicht am 10. Dezember 2020
Gesehen am 10.01.2024
Beschreibung:Online Resource
DOI:10.48550/arXiv.2012.05751