The self-similar evolution of stationary point processes via persistent homology

Persistent homology provides a robust methodology to infer topological structures from point cloud data. Here we explore the persistent homology of point clouds embedded into a probabilistic setting, exploiting the theory of point processes. We provide variants of notions of ergodicity and investiga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Spitz, Daniel (VerfasserIn) , Wienhard, Anna (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 4 Aug 2023
Ausgabe:Version v3
In: Arxiv
Year: 2023, Pages: 1-39
DOI:10.48550/arXiv.2012.05751
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.48550/arXiv.2012.05751
Verlag, kostenfrei, Volltext: http://arxiv.org/abs/2012.05751
Volltext
Verfasserangaben:Daniel Spitz and Anna Wienhard

MARC

LEADER 00000caa a2200000 c 4500
001 1817965492
003 DE-627
005 20240916105052.0
007 cr uuu---uuuuu
008 221004s2023 xx |||||o 00| ||eng c
024 7 |a 10.48550/arXiv.2012.05751  |2 doi 
035 |a (DE-627)1817965492 
035 |a (DE-599)KXP1817965492 
035 |a (OCoLC)1361714871 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Spitz, Daniel  |d 1994-  |e VerfasserIn  |0 (DE-588)1182934374  |0 (DE-627)1662935005  |4 aut 
245 1 4 |a The self-similar evolution of stationary point processes via persistent homology  |c Daniel Spitz and Anna Wienhard 
250 |a Version v3 
264 1 |c 4 Aug 2023 
300 |b Illustrationen 
300 |a 39 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online veröffentlicht am 10. Dezember 2020 
500 |a Gesehen am 10.01.2024 
520 |a Persistent homology provides a robust methodology to infer topological structures from point cloud data. Here we explore the persistent homology of point clouds embedded into a probabilistic setting, exploiting the theory of point processes. We provide variants of notions of ergodicity and investigate measures on the space of persistence diagrams. In particular we introduce the notion of self-similar scaling of persistence diagram expectation measures and prove a packing relation for the occurring dynamical scaling exponents. As a byproduct we generalize the strong law of large numbers for persistent Betti numbers proven in [Hiraoka et al., Ann. Appl. Probab. 28(5), 2018] for averages over cubes to arbitrary convex averaging sequences. 
650 4 |a Mathematics - Probability 
700 1 |a Wienhard, Anna  |d 1977-  |e VerfasserIn  |0 (DE-588)137817975  |0 (DE-627)696086891  |0 (DE-576)305331280  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2023), Artikel-ID 2012.05751, Seite 1-39  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a The self-similar evolution of stationary point processes via persistent homology 
773 1 8 |g year:2023  |g elocationid:2012.05751  |g pages:1-39  |g extent:39  |a The self-similar evolution of stationary point processes via persistent homology 
856 4 0 |u https://doi.org/10.48550/arXiv.2012.05751  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u http://arxiv.org/abs/2012.05751  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20221004 
993 |a Article 
994 |a 2023 
998 |g 137817975  |a Wienhard, Anna  |m 137817975:Wienhard, Anna  |d 110000  |d 110400  |d 700000  |d 728500  |e 110000PW137817975  |e 110400PW137817975  |e 700000PW137817975  |e 728500PW137817975  |k 0/110000/  |k 1/110000/110400/  |k 0/700000/  |k 1/700000/728500/  |p 2  |y j 
998 |g 1182934374  |a Spitz, Daniel  |m 1182934374:Spitz, Daniel  |d 130000  |d 130300  |d 700000  |d 728500  |e 130000PS1182934374  |e 130300PS1182934374  |e 700000PS1182934374  |e 728500PS1182934374  |k 0/130000/  |k 1/130000/130300/  |k 0/700000/  |k 1/700000/728500/  |p 1  |x j 
999 |a KXP-PPN1817965492  |e 4194195450 
BIB |a Y 
JSO |a {"id":{"doi":["10.48550/arXiv.2012.05751"],"eki":["1817965492"]},"origin":[{"edition":"Version v3","dateIssuedKey":"2023","dateIssuedDisp":"4 Aug 2023"}],"name":{"displayForm":["Daniel Spitz and Anna Wienhard"]},"relHost":[{"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org","dateIssuedDisp":"1991-"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"note":["Gesehen am 28.05.2024"],"disp":"The self-similar evolution of stationary point processes via persistent homologyArxiv","type":{"media":"Online-Ressource","bibl":"edited-book"},"recId":"509006531","language":["eng"],"pubHistory":["1991 -"],"part":{"pages":"1-39","year":"2023","extent":"39","text":"(2023), Artikel-ID 2012.05751, Seite 1-39"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}]}],"physDesc":[{"extent":"39 S.","noteIll":"Illustrationen"}],"title":[{"title_sort":"self-similar evolution of stationary point processes via persistent homology","title":"The self-similar evolution of stationary point processes via persistent homology"}],"person":[{"display":"Spitz, Daniel","roleDisplay":"VerfasserIn","role":"aut","family":"Spitz","given":"Daniel"},{"display":"Wienhard, Anna","roleDisplay":"VerfasserIn","role":"aut","family":"Wienhard","given":"Anna"}],"recId":"1817965492","language":["eng"],"note":["Online veröffentlicht am 10. Dezember 2020","Gesehen am 10.01.2024"],"type":{"media":"Online-Ressource","bibl":"chapter"}} 
SRT |a SPITZDANIESELFSIMILA4202