Homogeneous multigrid for HDG
We introduce a multigrid method that is homogeneous in the sense that it uses the same hybridizable discontinuous Galerkin (HDG) discretization scheme for Poisson’s equation on all levels. In particular, we construct a stable injection operator and prove optimal convergence of the method under the a...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
October 2022
|
| In: |
IMA journal of numerical analysis
Year: 2022, Volume: 42, Issue: 4, Pages: 3135-3153 |
| ISSN: | 1464-3642 |
| DOI: | 10.1093/imanum/drab055 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1093/imanum/drab055 Verlag, lizenzpflichtig, Volltext: https://academic.oup.com/imajna/article/42/4/3135/6323813 |
| Author Notes: | Peipei Lu, Andreas Rupp and Guido Kanschat |
| Summary: | We introduce a multigrid method that is homogeneous in the sense that it uses the same hybridizable discontinuous Galerkin (HDG) discretization scheme for Poisson’s equation on all levels. In particular, we construct a stable injection operator and prove optimal convergence of the method under the assumption of elliptic regularity. Numerical experiments underline our analytical findings. |
|---|---|
| Item Description: | Online veröffentlicht am 19. Juli 2021 Gesehen am 10.01.2024 |
| Physical Description: | Online Resource |
| ISSN: | 1464-3642 |
| DOI: | 10.1093/imanum/drab055 |