Homogeneous multigrid for HDG

We introduce a multigrid method that is homogeneous in the sense that it uses the same hybridizable discontinuous Galerkin (HDG) discretization scheme for Poisson’s equation on all levels. In particular, we construct a stable injection operator and prove optimal convergence of the method under the a...

Full description

Saved in:
Bibliographic Details
Main Authors: Lu, Peipei (Author) , Rupp, Andreas (Author) , Kanschat, Guido (Author)
Format: Article (Journal)
Language:English
Published: October 2022
In: IMA journal of numerical analysis
Year: 2022, Volume: 42, Issue: 4, Pages: 3135-3153
ISSN:1464-3642
DOI:10.1093/imanum/drab055
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1093/imanum/drab055
Verlag, lizenzpflichtig, Volltext: https://academic.oup.com/imajna/article/42/4/3135/6323813
Get full text
Author Notes:Peipei Lu, Andreas Rupp and Guido Kanschat
Description
Summary:We introduce a multigrid method that is homogeneous in the sense that it uses the same hybridizable discontinuous Galerkin (HDG) discretization scheme for Poisson’s equation on all levels. In particular, we construct a stable injection operator and prove optimal convergence of the method under the assumption of elliptic regularity. Numerical experiments underline our analytical findings.
Item Description:Online veröffentlicht am 19. Juli 2021
Gesehen am 10.01.2024
Physical Description:Online Resource
ISSN:1464-3642
DOI:10.1093/imanum/drab055