A geographical study of M̄2(P2,4)main

We discuss criteria for a stable map of genus two and degree $4$ to the projective plane to be smoothable, as an application of our modular desingularisation of $\overline{\mathcal M}_{2,n}(\mathbb{P}^r,d)^{\text{main}}$ via logarithmic geometry and Gorenstein singularities.

Saved in:
Bibliographic Details
Main Authors: Battistella, Luca (Author) , Carocci, Francesca (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 19 November 2021
Edition:Version v2
In: Arxiv
Year: 2021, Pages: 1-22
DOI:10.48550/arXiv.2010.15799
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2010.15799
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2010.15799
Get full text
Author Notes:Luca Battistella and Francesca Carocci
Description
Summary:We discuss criteria for a stable map of genus two and degree $4$ to the projective plane to be smoothable, as an application of our modular desingularisation of $\overline{\mathcal M}_{2,n}(\mathbb{P}^r,d)^{\text{main}}$ via logarithmic geometry and Gorenstein singularities.
Item Description:Im Titel wird M mit einem Oberstrich dargestellt, "2" bei M2 tiefgestellt, bei P2 hochgestellt, "main" ebensfalls hochgestellt
Version 1 vom 29. Oktober 2020, Version 2 vom 19. November 2021
Gesehen am 05.10.2022
Physical Description:Online Resource
DOI:10.48550/arXiv.2010.15799