A geographical study of M̄2(P2,4)main
We discuss criteria for a stable map of genus two and degree $4$ to the projective plane to be smoothable, as an application of our modular desingularisation of $\overline{\mathcal M}_{2,n}(\mathbb{P}^r,d)^{\text{main}}$ via logarithmic geometry and Gorenstein singularities.
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article (Journal) Chapter/Article |
| Language: | English |
| Published: |
19 November 2021
|
| Edition: | Version v2 |
| In: |
Arxiv
Year: 2021, Pages: 1-22 |
| DOI: | 10.48550/arXiv.2010.15799 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2010.15799 Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2010.15799 |
| Author Notes: | Luca Battistella and Francesca Carocci |
| Summary: | We discuss criteria for a stable map of genus two and degree $4$ to the projective plane to be smoothable, as an application of our modular desingularisation of $\overline{\mathcal M}_{2,n}(\mathbb{P}^r,d)^{\text{main}}$ via logarithmic geometry and Gorenstein singularities. |
|---|---|
| Item Description: | Im Titel wird M mit einem Oberstrich dargestellt, "2" bei M2 tiefgestellt, bei P2 hochgestellt, "main" ebensfalls hochgestellt Version 1 vom 29. Oktober 2020, Version 2 vom 19. November 2021 Gesehen am 05.10.2022 |
| Physical Description: | Online Resource |
| DOI: | 10.48550/arXiv.2010.15799 |