A polyfold proof of Gromov's non-squeezing theorem

We re-prove Gromov's non-squeezing theorem by applying Polyfold Theory to a simple Gromov-Witten moduli space. Thus we demonstrate how to utilize the work of Hofer-Wysocki-Zehnder to give proofs involving moduli spaces of pseudoholomorphic curves that are relatively short and broadly accessible...

Full description

Saved in:
Bibliographic Details
Main Authors: Beckschulte, Franziska (Author) , Datta, Ipsita (Author) , Seifert, Irene (Author) , Vocke, Anna-Maria (Author) , Wehrheim, Katrin (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 14 Oct 2020
In: Arxiv
Year: 2020, Pages: 1-37
DOI:10.48550/arXiv.2010.07248
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2010.07248
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2010.07248
Get full text
Author Notes:Franziska Beckschulte, Ipsita Datta, Irene Seifert, Anna-Maria Vocke, and Katrin Wehrheim
Description
Summary:We re-prove Gromov's non-squeezing theorem by applying Polyfold Theory to a simple Gromov-Witten moduli space. Thus we demonstrate how to utilize the work of Hofer-Wysocki-Zehnder to give proofs involving moduli spaces of pseudoholomorphic curves that are relatively short and broadly accessible, while also fully detailed and rigorous. We moreover review the polyfold description of Gromov-Witten moduli spaces in the relevant case of spheres with minimal energy and one marked point.
Item Description:Gesehen am 05.10.2022
Physical Description:Online Resource
DOI:10.48550/arXiv.2010.07248