A smooth compactification of the space of genus two curves in projective space: via logarithmic geometry and Gorenstein curves

We construct a modular desingularisation of $\overline{\mathcal{M}}_{2,n}(\mathbb{P}^r,d)^{\text{main}}$. The geometry of Gorenstein singularities of genus two leads us to consider maps from prestable admissible covers: with this enhanced logarithmic structure, it is possible to desingularise the ma...

Full description

Saved in:
Bibliographic Details
Main Authors: Battistella, Luca (Author) , Carocci, Francesca (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 10 Sep 2021
Edition:Version v3
In: Arxiv
Year: 2021, Pages: 1-59
DOI:10.48550/arXiv.2008.13506
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2008.13506
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2008.13506
Get full text
Author Notes:Luca Battistella and Francesca Carocci
Description
Summary:We construct a modular desingularisation of $\overline{\mathcal{M}}_{2,n}(\mathbb{P}^r,d)^{\text{main}}$. The geometry of Gorenstein singularities of genus two leads us to consider maps from prestable admissible covers: with this enhanced logarithmic structure, it is possible to desingularise the main component by means of a logarithmic modification. Both isolated and non-reduced singularities appear naturally. Our construction gives rise to a notion of reduced Gromov-Witten invariants in genus two.
Item Description:Version 1 vom 31. August 2020, Version 2 vom 30. Oktober 2020, Version 3 vom 10. September 2021
Gesehen am 06.10.2022
Physical Description:Online Resource
DOI:10.48550/arXiv.2008.13506