Structure of semi-continuous q-tame persistence modules
Using a result by Chazal, Crawley-Boevey and de Silva concerning radicals of persistence modules, we show that every lower semi-continuous q-tame persistence module can be decomposed as a direct sum of interval modules and that every upper semi-continuous q-tame persistence module can be decomposed...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article (Journal) Chapter/Article |
| Language: | English |
| Published: |
2 Jul 2022
|
| Edition: | Version v2 |
| In: |
Arxiv
Year: 2022, Pages: 1-11 |
| DOI: | 10.48550/arXiv.2008.09493 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2008.09493 Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2008.09493 |
| Author Notes: | Maximilian Schmahl |
| Summary: | Using a result by Chazal, Crawley-Boevey and de Silva concerning radicals of persistence modules, we show that every lower semi-continuous q-tame persistence module can be decomposed as a direct sum of interval modules and that every upper semi-continuous q-tame persistence module can be decomposed as a product of interval modules. |
|---|---|
| Item Description: | Version 1 vom 21. August 2020, Version 2 vom 2. Juli 2022 Gesehen am 06.10.2022 |
| Physical Description: | Online Resource |
| DOI: | 10.48550/arXiv.2008.09493 |