Structure of semi-continuous q-tame persistence modules

Using a result by Chazal, Crawley-Boevey and de Silva concerning radicals of persistence modules, we show that every lower semi-continuous q-tame persistence module can be decomposed as a direct sum of interval modules and that every upper semi-continuous q-tame persistence module can be decomposed...

Full description

Saved in:
Bibliographic Details
Main Author: Schmahl, Maximilian (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 2 Jul 2022
Edition:Version v2
In: Arxiv
Year: 2022, Pages: 1-11
DOI:10.48550/arXiv.2008.09493
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2008.09493
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2008.09493
Get full text
Author Notes:Maximilian Schmahl
Description
Summary:Using a result by Chazal, Crawley-Boevey and de Silva concerning radicals of persistence modules, we show that every lower semi-continuous q-tame persistence module can be decomposed as a direct sum of interval modules and that every upper semi-continuous q-tame persistence module can be decomposed as a product of interval modules.
Item Description:Version 1 vom 21. August 2020, Version 2 vom 2. Juli 2022
Gesehen am 06.10.2022
Physical Description:Online Resource
DOI:10.48550/arXiv.2008.09493