Structure of semi-continuous q-tame persistence modules
Using a result by Chazal, Crawley-Boevey and de Silva concerning radicals of persistence modules, we show that every lower semi-continuous q-tame persistence module can be decomposed as a direct sum of interval modules and that every upper semi-continuous q-tame persistence module can be decomposed...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
2 Jul 2022
|
| Ausgabe: | Version v2 |
| In: |
Arxiv
Year: 2022, Pages: 1-11 |
| DOI: | 10.48550/arXiv.2008.09493 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2008.09493 Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2008.09493 |
| Verfasserangaben: | Maximilian Schmahl |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1818104326 | ||
| 003 | DE-627 | ||
| 005 | 20230118143212.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 221006s2022 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.48550/arXiv.2008.09493 |2 doi | |
| 035 | |a (DE-627)1818104326 | ||
| 035 | |a (DE-599)KXP1818104326 | ||
| 035 | |a (OCoLC)1361696008 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Schmahl, Maximilian |d 1995- |e VerfasserIn |0 (DE-588)1269611313 |0 (DE-627)1818115190 |4 aut | |
| 245 | 1 | 0 | |a Structure of semi-continuous q-tame persistence modules |c Maximilian Schmahl |
| 250 | |a Version v2 | ||
| 264 | 1 | |c 2 Jul 2022 | |
| 300 | |a 11 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Version 1 vom 21. August 2020, Version 2 vom 2. Juli 2022 | ||
| 500 | |a Gesehen am 06.10.2022 | ||
| 520 | |a Using a result by Chazal, Crawley-Boevey and de Silva concerning radicals of persistence modules, we show that every lower semi-continuous q-tame persistence module can be decomposed as a direct sum of interval modules and that every upper semi-continuous q-tame persistence module can be decomposed as a product of interval modules. | ||
| 650 | 4 | |a 16G20, 55N31 | |
| 650 | 4 | |a Mathematics - Algebraic Topology | |
| 650 | 4 | |a Mathematics - Representation Theory | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2022), Artikel-ID 2008.09493, Seite 1-11 |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a Structure of semi-continuous q-tame persistence modules |
| 773 | 1 | 8 | |g year:2022 |g elocationid:2008.09493 |g pages:1-11 |g extent:11 |a Structure of semi-continuous q-tame persistence modules |
| 856 | 4 | 0 | |u https://doi.org/10.48550/arXiv.2008.09493 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u http://arxiv.org/abs/2008.09493 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20221006 | ||
| 993 | |a Article | ||
| 994 | |a 2022 | ||
| 998 | |g 1269611313 |a Schmahl, Maximilian |m 1269611313:Schmahl, Maximilian |d 110000 |d 110100 |d 110000 |d 110400 |d 700000 |d 728500 |e 110000PS1269611313 |e 110100PS1269611313 |e 110000PS1269611313 |e 110400PS1269611313 |e 700000PS1269611313 |e 728500PS1269611313 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |k 0/700000/ |k 1/700000/728500/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1818104326 |e 4194703790 | ||
| BIB | |a Y | ||
| JSO | |a {"language":["eng"],"name":{"displayForm":["Maximilian Schmahl"]},"type":{"bibl":"chapter","media":"Online-Ressource"},"recId":"1818104326","id":{"eki":["1818104326"],"doi":["10.48550/arXiv.2008.09493"]},"note":["Version 1 vom 21. August 2020, Version 2 vom 2. Juli 2022","Gesehen am 06.10.2022"],"origin":[{"dateIssuedKey":"2022","edition":"Version v2","dateIssuedDisp":"2 Jul 2022"}],"person":[{"role":"aut","display":"Schmahl, Maximilian","family":"Schmahl","given":"Maximilian"}],"title":[{"title_sort":"Structure of semi-continuous q-tame persistence modules","title":"Structure of semi-continuous q-tame persistence modules"}],"relHost":[{"id":{"zdb":["2225896-6"],"eki":["509006531"]},"pubHistory":["1991 -"],"recId":"509006531","physDesc":[{"extent":"Online-Ressource"}],"note":["Gesehen am 28.05.2024"],"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org","dateIssuedDisp":"1991-"}],"disp":"Structure of semi-continuous q-tame persistence modulesArxiv","language":["eng"],"type":{"bibl":"edited-book","media":"Online-Ressource"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"part":{"extent":"11","year":"2022","pages":"1-11","text":"(2022), Artikel-ID 2008.09493, Seite 1-11"}}],"physDesc":[{"extent":"11 S."}]} | ||
| SRT | |a SCHMAHLMAXSTRUCTUREO2202 | ||