A comparison of approximate non-linear Riemann solvers for Relativistic MHD

We compare a particular selection of approximate solutions of the Riemann problem in the context of ideal relativistic magnetohydrodynamics. In particular, we focus on Riemann solvers not requiring a full eigenvector structure. Such solvers recover the solution of the Riemann problem by solving a si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mattia, Giancarlo (VerfasserIn) , Mignone, Andrea (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2022
In: Monthly notices of the Royal Astronomical Society
Year: 2022, Jahrgang: 510, Heft: 1, Pages: 481-499
ISSN:1365-2966
DOI:10.1093/mnras/stab3373
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1093/mnras/stab3373
Verlag, lizenzpflichtig, Volltext: https://www.webofscience.com/api/gateway?GWVersion=2&SrcAuth=DOISource&SrcApp=WOS&KeyAID=10.1093%2Fmnras%2Fstab3373&DestApp=DOI&SrcAppSID=EUW1ED0E40TRwfzoQVMG1L5M6shBs&SrcJTitle=MONTHLY+NOTICES+OF+THE+ROYAL+ASTRONOMICAL+SOCIETY&DestDOIRegistrantName=Oxford+University+Press
Volltext
Verfasserangaben:G. Mattia and A. Mignone
Beschreibung
Zusammenfassung:We compare a particular selection of approximate solutions of the Riemann problem in the context of ideal relativistic magnetohydrodynamics. In particular, we focus on Riemann solvers not requiring a full eigenvector structure. Such solvers recover the solution of the Riemann problem by solving a simplified or reduced set of jump conditions, whose level of complexity depends on the intermediate modes that are included. Five different approaches - namely the HLL, HLLC, HLLD, HLLEM, and GFORCE schemes - are compared in terms of accuracy and robustness against one - and multidimensional standard numerical benchmarks. Our results demonstrate that - for weak or moderate magnetizations - the HLLD Riemann solver yields the most accurate results, followed by HLLC solver(s). The GFORCE approach provides a valid alternative to the HLL solver being less dissipative and equally robust for strongly magnetized environments. Finally, our tests show that the HLLEM Riemann solver is not cost-effective in improving the accuracy of the solution and reducing the numerical dissipation.
Beschreibung:Advance Access publication 2021 November 24
Gesehen am 07.10.2022
Beschreibung:Online Resource
ISSN:1365-2966
DOI:10.1093/mnras/stab3373