A-model implications of extended mirror symmetry

Associativity of the quantum product ensures flatness of the Dubrovin connection and is the basis for Hodge-theoretic mirror symmetry of Calabi-Yau threefolds. We use ring and module structure on cohomology pertaining to a Lagrangian submanifold to define an extension of the A-model Variation of mix...

Full description

Saved in:
Bibliographic Details
Main Authors: Hahn, Lukas (Author) , Walcher, Johannes (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 21 Jan 2022
In: Arxiv
Year: 2022, Pages: 1-35
DOI:10.48550/arXiv.2201.08745
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2201.08745
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2201.08745
Get full text
Author Notes:Lukas Hahn and Johannes Walcher
Description
Summary:Associativity of the quantum product ensures flatness of the Dubrovin connection and is the basis for Hodge-theoretic mirror symmetry of Calabi-Yau threefolds. We use ring and module structure on cohomology pertaining to a Lagrangian submanifold to define an extension of the A-model Variation of mixed Hodge structure that matches the predictions from extended mirror symmetry. Our construction makes contact with axioms for open Gromov-Witten theory recently proposed by Solomon-Tukachinsky.
Item Description:Gesehen am 12.10.2022
Physical Description:Online Resource
DOI:10.48550/arXiv.2201.08745