What's anomalous in LHC jets?

Searches for anomalies are the main motivation for the LHC and define key analysis steps, including triggers. We discuss how LHC anomalies can be defined through probability density estimates, evaluated in a physics space or in an appropriate neural network latent space. We illustrate this for class...

Full description

Saved in:
Bibliographic Details
Main Authors: Buss, Thorsten (Author) , Dillon, Barry M. (Author) , Finke, Thorben (Author) , Krämer, Michael (Author) , Morandini, Alessandro (Author) , Mück, Alexander (Author) , Oleksiyuk, Ivan (Author) , Plehn, Tilman (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 12 Oct 2023
Edition:Version v3
In: Arxiv
Year: 2023, Pages: 1-30
DOI:10.48550/arXiv.2202.00686
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.48550/arXiv.2202.00686
Verlag, kostenfrei, Volltext: http://arxiv.org/abs/2202.00686
Get full text
Author Notes:Thorsten Buss, Barry M. Dillon, Thorben Finke, Michael Krämer, Alessandro Morandini, Alexander Mück, Ivan Oleksiyuk, and Tilman Plehn
Description
Summary:Searches for anomalies are the main motivation for the LHC and define key analysis steps, including triggers. We discuss how LHC anomalies can be defined through probability density estimates, evaluated in a physics space or in an appropriate neural network latent space. We illustrate this for classical k-means clustering, a Dirichlet variational autoencoder, and invertible neural networks. For two especially challenging scenarios of jets from a dark sector we evaluate the strengths and limitations of each method.
Item Description:Online veröffentlicht am 1. Februar 2022, Version 2 am 11. Februar 2022, Version 3 am 12. Oktober 2023
Gesehen am 12.10.2022
Physical Description:Online Resource
DOI:10.48550/arXiv.2202.00686