Spiking neural network equalization for IM/DD optical communication

A spiking neural network (SNN) equalizer model suitable for electronic neuromorphic hardware is designed for an IM/DD link. The SNN achieves the same bit-error-rate as an artificial neural network, outperforming linear equalization.

Saved in:
Bibliographic Details
Main Authors: Arnold, Elias (Author) , Böcherer, Georg (Author) , Müller, Eric (Author) , Spilger, Philipp (Author) , Schemmel, Johannes (Author) , Calabrò, Stefano (Author) , Kuschnerov, Maxim (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 1 Jun 2022
Edition:Version v2
In: Arxiv
Year: 2022, Pages: 1-5
DOI:10.48550/arXiv.2205.04263
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2205.04263
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2205.04263
Get full text
Author Notes:Elias Arnold, Georg Böcherer, Eric Müller, Philipp Spilger, Johannes Schemmel, Stefano Calabrò, Maxim Kuschnerov
Description
Summary:A spiking neural network (SNN) equalizer model suitable for electronic neuromorphic hardware is designed for an IM/DD link. The SNN achieves the same bit-error-rate as an artificial neural network, outperforming linear equalization.
Item Description:Version 1 vom 9 Mai 2022, Version 2 vom 1 Juni 2022
Gesehen am 17.10.2022
Physical Description:Online Resource
DOI:10.48550/arXiv.2205.04263