Spiking neural network equalization for IM/DD optical communication
A spiking neural network (SNN) equalizer model suitable for electronic neuromorphic hardware is designed for an IM/DD link. The SNN achieves the same bit-error-rate as an artificial neural network, outperforming linear equalization.
Gespeichert in:
| Hauptverfasser: | , , , , , , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
1 Jun 2022
|
| Ausgabe: | Version v2 |
| In: |
Arxiv
Year: 2022, Pages: 1-5 |
| DOI: | 10.48550/arXiv.2205.04263 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2205.04263 Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2205.04263 |
| Verfasserangaben: | Elias Arnold, Georg Böcherer, Eric Müller, Philipp Spilger, Johannes Schemmel, Stefano Calabrò, Maxim Kuschnerov |
| Zusammenfassung: | A spiking neural network (SNN) equalizer model suitable for electronic neuromorphic hardware is designed for an IM/DD link. The SNN achieves the same bit-error-rate as an artificial neural network, outperforming linear equalization. |
|---|---|
| Beschreibung: | Version 1 vom 9 Mai 2022, Version 2 vom 1 Juni 2022 Gesehen am 17.10.2022 |
| Beschreibung: | Online Resource |
| DOI: | 10.48550/arXiv.2205.04263 |