Spiking neural network equalization on neuromorphic hardware for IM/DD optical communication
A spiking neural network (SNN) non-linear equalizer model is implemented on the mixed-signal neuromorphic hardware system BrainScaleS-2 and evaluated for an IM/DD link. The BER 2e-3 is achieved with a hardware penalty less than 1 dB, outperforming numeric linear equalization.
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article (Journal) Chapter/Article |
| Language: | English |
| Published: |
2022-05-11
|
| In: |
Arxiv
Year: 2022, Pages: 1-6 |
| DOI: | 10.48550/arXiv.2206.00401 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2206.00401 Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2206.00401 |
| Author Notes: | Elias Arnold, Georg Böcherer, Eric Müller, Philipp Spilger, Johannes Schemmel, Stefano Calabrò, Maxim Kuschnerov |
| Summary: | A spiking neural network (SNN) non-linear equalizer model is implemented on the mixed-signal neuromorphic hardware system BrainScaleS-2 and evaluated for an IM/DD link. The BER 2e-3 is achieved with a hardware penalty less than 1 dB, outperforming numeric linear equalization. |
|---|---|
| Item Description: | Version 1 vom 2022-05-11 Gesehen am 18.10.2022 |
| Physical Description: | Online Resource |
| DOI: | 10.48550/arXiv.2206.00401 |