Artificial intelligence in histopathology: enhancing cancer research and clinical oncology
Artificial intelligence (AI) methods have multiplied our capabilities to extract quantitative information from digital histopathology images. AI is expected to reduce workload for human experts, improve the objectivity and consistency of pathology reports, and have a clinical impact by extracting hi...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
22 September 2022
|
| In: |
Nature cancer
Year: 2022, Volume: 3, Issue: 9, Pages: 1026-1038 |
| ISSN: | 2662-1347 |
| DOI: | 10.1038/s43018-022-00436-4 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1038/s43018-022-00436-4 Verlag, lizenzpflichtig, Volltext: https://www.nature.com/articles/s43018-022-00436-4 |
| Author Notes: | Artem Shmatko, Narmin Ghaffari Laleh, Moritz Gerstung and Jakob Nikolas Kather |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1824412789 | ||
| 003 | DE-627 | ||
| 005 | 20230118121636.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 221205s2022 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1038/s43018-022-00436-4 |2 doi | |
| 035 | |a (DE-627)1824412789 | ||
| 035 | |a (DE-599)KXP1824412789 | ||
| 035 | |a (OCoLC)1361670417 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 33 |2 sdnb | ||
| 100 | 1 | |a Shmatko, Artem |e VerfasserIn |0 (DE-588)1277649278 |0 (DE-627)183061276X |4 aut | |
| 245 | 1 | 0 | |a Artificial intelligence in histopathology |b enhancing cancer research and clinical oncology |c Artem Shmatko, Narmin Ghaffari Laleh, Moritz Gerstung and Jakob Nikolas Kather |
| 264 | 1 | |c 22 September 2022 | |
| 300 | |a 13 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 05.12.2022 | ||
| 520 | |a Artificial intelligence (AI) methods have multiplied our capabilities to extract quantitative information from digital histopathology images. AI is expected to reduce workload for human experts, improve the objectivity and consistency of pathology reports, and have a clinical impact by extracting hidden information from routinely available data. Here, we describe how AI can be used to predict cancer outcome, treatment response, genetic alterations and gene expression from digitized histopathology slides. We summarize the underlying technologies and emerging approaches, noting limitations, including the need for data sharing and standards. Finally, we discuss the broader implications of AI in cancer research and oncology. | ||
| 650 | 4 | |a Cancer | |
| 650 | 4 | |a Cancer imaging | |
| 650 | 4 | |a Computational science | |
| 650 | 4 | |a Machine learning | |
| 700 | 1 | |a Ghaffari Laleh, Narmin |e VerfasserIn |4 aut | |
| 700 | 1 | |a Gerstung, Moritz |e VerfasserIn |0 (DE-588)121312221X |0 (DE-627)1703454383 |4 aut | |
| 700 | 1 | |a Kather, Jakob Nikolas |d 1989- |e VerfasserIn |0 (DE-588)1064064914 |0 (DE-627)812897587 |0 (DE-576)423589091 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Nature cancer |d London : Nature Research, 2020 |g 3(2022), 9, Seite 1026-1038 |h Online-Ressource |w (DE-627)1687330697 |w (DE-600)3005299-3 |x 2662-1347 |7 nnas |a Artificial intelligence in histopathology enhancing cancer research and clinical oncology |
| 773 | 1 | 8 | |g volume:3 |g year:2022 |g number:9 |g pages:1026-1038 |g extent:13 |a Artificial intelligence in histopathology enhancing cancer research and clinical oncology |
| 856 | 4 | 0 | |u https://doi.org/10.1038/s43018-022-00436-4 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.nature.com/articles/s43018-022-00436-4 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20221205 | ||
| 993 | |a Article | ||
| 994 | |a 2022 | ||
| 998 | |g 1064064914 |a Kather, Jakob Nikolas |m 1064064914:Kather, Jakob Nikolas |d 910000 |d 910100 |e 910000PK1064064914 |e 910100PK1064064914 |k 0/910000/ |k 1/910000/910100/ |p 4 |y j | ||
| 999 | |a KXP-PPN1824412789 |e 422495351X | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"id":{"eki":["1824412789"],"doi":["10.1038/s43018-022-00436-4"]},"name":{"displayForm":["Artem Shmatko, Narmin Ghaffari Laleh, Moritz Gerstung and Jakob Nikolas Kather"]},"physDesc":[{"extent":"13 S."}],"recId":"1824412789","language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 05.12.2022"],"title":[{"subtitle":"enhancing cancer research and clinical oncology","title":"Artificial intelligence in histopathology","title_sort":"Artificial intelligence in histopathology"}],"origin":[{"dateIssuedDisp":"22 September 2022","dateIssuedKey":"2022"}],"person":[{"display":"Shmatko, Artem","family":"Shmatko","given":"Artem","role":"aut"},{"given":"Narmin","role":"aut","family":"Ghaffari Laleh","display":"Ghaffari Laleh, Narmin"},{"role":"aut","given":"Moritz","family":"Gerstung","display":"Gerstung, Moritz"},{"given":"Jakob Nikolas","role":"aut","family":"Kather","display":"Kather, Jakob Nikolas"}],"relHost":[{"part":{"pages":"1026-1038","text":"3(2022), 9, Seite 1026-1038","extent":"13","issue":"9","year":"2022","volume":"3"},"title":[{"title_sort":"Nature cancer","title":"Nature cancer"}],"id":{"issn":["2662-1347"],"eki":["1687330697"],"zdb":["3005299-3"]},"note":["Gesehen am 14.01.20"],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"},"pubHistory":["Volume 1, Issue 1, (January 2020)-"],"origin":[{"dateIssuedKey":"2020","publisherPlace":"London","dateIssuedDisp":"2020-","publisher":"Nature Research"}],"disp":"Artificial intelligence in histopathology enhancing cancer research and clinical oncologyNature cancer","recId":"1687330697","physDesc":[{"extent":"Online-Ressource"}]}]} | ||
| SRT | |a SHMATKOARTARTIFICIAL2220 | ||