Automated detection and segmentation of intracranial hemorrhage suspect hyperdensities in non-contrast-enhanced CT scans of acute stroke patients
Artificial intelligence (AI)-based image analysis is increasingly applied in the acute stroke field. Its implementation for the detection and quantification of hemorrhage suspect hyperdensities in non-contrast-enhanced head CT (NCCT) scans may facilitate clinical decision-making and accelerate strok...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
2022
|
| In: |
European radiology
Year: 2022, Volume: 32, Issue: 4, Pages: 2246-2254 |
| ISSN: | 1432-1084 |
| DOI: | 10.1007/s00330-021-08352-4 |
| Online Access: | Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s00330-021-08352-4 Verlag, kostenfrei, Volltext: https://link.springer.com/article/10.1007/s00330-021-08352-4 |
| Author Notes: | N. Schmitt, Y. Mokli, C.S. Weyland, S. Gerry, C. Herweh, P.A. Ringleb, S. Nagel |
| Summary: | Artificial intelligence (AI)-based image analysis is increasingly applied in the acute stroke field. Its implementation for the detection and quantification of hemorrhage suspect hyperdensities in non-contrast-enhanced head CT (NCCT) scans may facilitate clinical decision-making and accelerate stroke management. |
|---|---|
| Item Description: | Online veröffentlicht am 13. November 2021 Gesehen am 14.12.2022 |
| Physical Description: | Online Resource |
| ISSN: | 1432-1084 |
| DOI: | 10.1007/s00330-021-08352-4 |