Observability of paramagnetic NMR signals at over 10 000 ppm chemical shifts: dedicated to Prof. Frank H. Köhler on the occasion of his 80th birthday

We report an experimental observation of 31P NMR resonances shifted by over 10 000 ppm (meaning percent range, and a new record for solutions), and similar 1H chemical shifts, in an intermediate-spin square planar ferrous complex [tBu(PNP)Fe-H], where PNP is a carbazole-based pincer ligand. Using a...

Full description

Saved in:
Bibliographic Details
Main Authors: Ott, Jonas C. (Author) , Suturina, Elizaveta A. (Author) , Kuprov, Ilya (Author) , Nehrkorn, Joscha (Author) , Schnegg, Alexander (Author) , Enders, Markus (Author) , Gade, Lutz H. (Author)
Format: Article (Journal) Festschrift
Language:English
Published: 05 August 2021
In: Angewandte Chemie
Year: 2021, Volume: 133, Issue: 42, Pages: 23038-23046
ISSN:1521-3757
DOI:10.1002/ange.202107944
Subjects:
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1002/ange.202107944
Verlag, lizenzpflichtig, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/ange.202107944
Get full text
Author Notes:Jonas C. Ott, Elizaveta A. Suturina, Ilya Kuprov, Joscha Nehrkorn, Alexander Schnegg, Markus Enders, and Lutz H. Gade
Description
Summary:We report an experimental observation of 31P NMR resonances shifted by over 10 000 ppm (meaning percent range, and a new record for solutions), and similar 1H chemical shifts, in an intermediate-spin square planar ferrous complex [tBu(PNP)Fe-H], where PNP is a carbazole-based pincer ligand. Using a combination of electronic structure theory, nuclear magnetic resonance, magnetometry, and terahertz electron paramagnetic resonance, the influence of magnetic anisotropy and zero-field splitting on the paramagnetic shift and relaxation enhancement is investigated. Detailed spin dynamics simulations indicate that, even with relatively slow electron spin relaxation (T1 ≈10−11 s), it remains possible to observe NMR signals of directly metal-bonded atoms because pronounced rhombicity in the electron zero-field splitting reduces nuclear paramagnetic relaxation enhancement.
Item Description:Gesehen am 15.12.2022
Physical Description:Online Resource
ISSN:1521-3757
DOI:10.1002/ange.202107944