Silicon catalyzed C-O bond ring closing metathesis of polyethers

The Lewis superacid bis(perchlorocatecholato)silane catalyzes C−O bond metathesis of alkyl ethers with an efficiency outperforming all earlier reported systems. Chemoselective ring contractions of macrocyclic crown ethers enable substrate-specific transformations, and an unprecedented ring-closing m...

Full description

Saved in:
Bibliographic Details
Main Authors: Ansmann, Nils (Author) , Thorwart, Thaddäus (Author) , Greb, Lutz (Author)
Format: Article (Journal)
Language:English
Published: [November 2, 2022]
In: Angewandte Chemie. International edition
Year: 2022, Volume: 61, Issue: 44, Pages: 1-5
ISSN:1521-3773
DOI:10.1002/anie.202210132
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1002/anie.202210132
Verlag, kostenfrei, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202210132
Get full text
Author Notes:Nils Ansmann, Thaddäus Thorwart, and Lutz Greb
Description
Summary:The Lewis superacid bis(perchlorocatecholato)silane catalyzes C−O bond metathesis of alkyl ethers with an efficiency outperforming all earlier reported systems. Chemoselective ring contractions of macrocyclic crown ethers enable substrate-specific transformations, and an unprecedented ring-closing metathesis of polyethylene glycols allows polymer-selective degradation. Quantum chemical computations scrutinize a high Lewis acidity paired with a simultaneous low propensity for polydentate substrate binding as critical for successful catalysis. Based on these mechanistic insights, a second-generation class of silicon Lewis superacid with enhanced efficacy is identified and demonstrated.
Item Description:First published: 15 September 2022
Gesehen am 20.12.2022
Physical Description:Online Resource
ISSN:1521-3773
DOI:10.1002/anie.202210132